Turn off MathJax
Article Contents
DI Haoyuan, LI Hongshuang. Reliability analysis of intermediate casing based on adaptive Kriging[J]. Journal of Aerospace Power, 2024, 39(X):20220707 doi: 10.13224/j.cnki.jasp.20220707
Citation: DI Haoyuan, LI Hongshuang. Reliability analysis of intermediate casing based on adaptive Kriging[J]. Journal of Aerospace Power, 2024, 39(X):20220707 doi: 10.13224/j.cnki.jasp.20220707

Reliability analysis of intermediate casing based on adaptive Kriging

doi: 10.13224/j.cnki.jasp.20220707
  • Received Date: 2022-09-19
    Available Online: 2024-02-28
  • In order to explore the structural reliability analysis method of the intermediate casing under multiple failure modes, a parametric finite element model was established for the deterministic analysis of an aero-engine intermediate casing. Considering the uncertainty of material properties, geometric parameters and external loads of the aero-engine intermediate casing, the limit state functions were constructed for the two most typical failure modes of the intermediate casing: static strength failure and stiffness failure. By constructing an adaptive Kriging surrogate model for two failure modes and combining with the generalized subset simulation method, the failure probability of the intermediate casing structure was predicted. And the correlation of the two failure modes was modeled based on the Copula function theory to determine the mutual influence between them, and the calculation results were compared with AK-GSS method. The results showed that the failure probability of the intermediate casing structure system was in the order of $ {R_2} $. Compared with the conventional method, the computational time of the AK-GSS method for solving the failure probability was reduced by 87.7% almost without loss of computational accuracy. In addition, the AK-GSS method still had high accuracy when considering the correlation between the two failure modes of the intermediary magazine.

     

  • loading
  • [1]
    刘建明,郝晟淳,武卉,等. 大落差长度比中介机匣气动性能试验及数值模拟[J]. 航空动力学报,2022,37(7): 1560-1568.
    [2]
    李飞,赵彦杰,李玉龙,等. 钛合金中介机匣快速熔模铸造工艺研究[J]. 特种铸造及有色合金,2019,39(6): 637-639.
    [3]
    张屹尚,陈健. 航空发动机轮盘结构可靠性全局灵敏度分析[J]. 兵器装备工程学报,2021,42(4): 244-249. doi: 10.11809/bqzbgcxb2021.04.046
    [4]
    王新刚,申强,韩凯忠,等. 竞争失效下多元退化建模的航空发动机可靠性分析[J]. 东北大学学报(自然科学版),2021,42(6): 807-813,820. doi: 10.12068/j.issn.1005-3026.2021.06.008
    [5]
    郭峰. Co-Kriging代理模型在压气机叶栅气动优化中的应用研究[D]. 哈尔滨: 哈尔滨工业大学,2019.
    [6]
    ZHAO Dezi,CAI Na. Aeroengine reliability prediction based on fuzzy and interval number[J]. Procedia Engineering,2015,99: 1284-1288. doi: 10.1016/j.proeng.2014.12.660
    [7]
    CHOI S K,GRANDHI R V,CANFIELD R A. Reliability-based structural design[M]. London: Springer,2007.
    [8]
    MAINÇON P. A first order reliability method for series systems[J]. Structural Safety,2000,22(1): 5-26. doi: 10.1016/S0167-4730(99)00036-3
    [9]
    ZHANG Junfu,DU Xiaoping. A second-order reliability method with first-order efficiency[J]. Journal of Mechanical Design,2010,132(10): 101006.
    [10]
    SUN Zhili,WANG Jian,LI Rui,et al. LIF: a new Kriging based learning function and its application to structural reliability analysis[J]. Reliability Engineering and System Safety,2017,157: 152-165. doi: 10.1016/j.ress.2016.09.003
    [11]
    ZHANG Xufang,WANG Lei,SØRENSEN J D. AKOIS: an adaptive Kriging oriented importance sampling method for structural system reliability analysis[J]. Structural Safety,2020,82: 101876. doi: 10.1016/j.strusafe.2019.101876
    [12]
    WANG Zeyu,SHAFIEEZADEH A. REAK: reliability analysis through Error rate-based Adaptive Kriging[J]. Reliability Engineering & System Safety,2019,182: 33-45.
    [13]
    陈雷,乔百杰,敖春燕,等. 基于叶端定时的转子叶片动应变重构不确定性量化[J]. 航空动力学报,2022,37(7): 1456-1468.
    [14]
    LI Hongshuang,MA Yuanzhuo,CAO Zijun. A generalized Subset Simulation approach for estimating small failure probabilities of multiple stochastic responses[J]. Computers and Structures,2015,153: 239-251. doi: 10.1016/j.compstruc.2014.10.014
    [15]
    LIU Peiling,DER KIUREGHIAN A. Multivariate distribution models with prescribed marginals and covariances[J]. Probabilistic Engineering Mechanics,1986,1(2): 105-112. doi: 10.1016/0266-8920(86)90033-0
    [16]
    ROSENBLATT M. Remarks on a multivariate transformation[J]. The Annals of Mathematical Statistics,1952,23(3): 470-472. doi: 10.1214/aoms/1177729394
    [17]
    RAYENS B,NELSEN R B. An introduction to copulas[J]. Technometrics,2000,42(3): 317.
    [18]
    TANG Xiaosong,LI Dianqing,ZHOU Chuangbing,et al. Impact of copulas for modeling bivariate distributions on system reliability[J]. Structural Safety,2013,44: 80-90. doi: 10.1016/j.strusafe.2013.06.004
    [19]
    唐家银,何平,宋东利. 基于Copula函数的失效相关构件可靠度计算[J]. 机械强度,2010,32(5): 740-744.
    [20]
    于慧臣,吴学仁. 航空发动机设计用材料手册[M]. 北京: 航空工业出版社,2014.
    [21]
    李春胜,黄德彬. 金属材料手册[M]. 北京: 化学工业出版社,2005.
    [22]
    龚良慈,李永新,刘尔重,等. 航空发动机设计手册[M]. 北京: 航空工业出版社,2001.
    [23]
    曹金凤,王旭春,孔亮. Python语言在Abaqus中的应用[M]. 北京: 机械工业出版社,2011.
    [24]
    XIAO Ningcong,YUAN Kai,ZHOU Chengning. Adaptive kriging-based efficient reliability method for structural systems with multiple failure modes and mixed variables[J]. Computer Methods in Applied Mechanics and Engineering,2020,359: 112649. doi: 10.1016/j.cma.2019.112649
    [25]
    LOPHAVEN S,NIELSEN H B,SØNDERGAARD J. DACE - A Matlab Kriging toolbox: version 2.0[R]. Copenhagen,Denmark: Technical University of Denmark,2002.
    [26]
    AU S K,BECK J L. Estimation of small failure probabilities in high dimensions by subset simulation[J]. Probabilistic Engineering Mechanics,2001,16(4): 263-277. doi: 10.1016/S0266-8920(01)00019-4
    [27]
    LIU Shisong,LI Shaojun. Multi-model D-vine copula regression model with vine copula-based dependence description[J]. Computers and Chemical Engineering,2022,161: 107788. doi: 10.1016/j.compchemeng.2022.107788
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (8) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return