Volume 38 Issue 7
Jun.  2023
Turn off MathJax
Article Contents
FENG Yunyang, SONG Xizhen, YUAN Wei, et al. Physics-informed neural networks based cascade loss model[J]. Journal of Aerospace Power, 2023, 38(7):1615-1625 doi: 10.13224/j.cnki.jasp.20220750
Citation: FENG Yunyang, SONG Xizhen, YUAN Wei, et al. Physics-informed neural networks based cascade loss model[J]. Journal of Aerospace Power, 2023, 38(7):1615-1625 doi: 10.13224/j.cnki.jasp.20220750

Physics-informed neural networks based cascade loss model

doi: 10.13224/j.cnki.jasp.20220750
  • Received Date: 2022-09-30
    Available Online: 2023-04-20
  • It is difficult to modify and broaden the scope of application for empirical models because of its inadequate ability to fit strong nonlinear function relationship. In order to solve these problems, a physics-informed deep learning cascade loss model of embedding the pressure distribution of cascade into neural networks was proposed. The loss prediction error decreased by 22.3% compared with empirical model for end-to-end neural networks and 37.9% compared with physics-informed model.

     

  • loading
  • [1]
    CUMPSTY N A. Compressor aerodynamics[M]. London: Longman Group, 1989.
    [2]
    CUMPSTY N A,GREITZER E M. Ideas and methods of turbomachinery aerodynamics: a historical view[J]. Journal of Propulsion and Power,2004,20(1): 15-26. doi: 10.2514/1.9176
    [3]
    AUNGIER R H. Axial-flow compressors[M]. New York: ASME Press, 2003.
    [4]
    LIEBLEIN S. Loss and stall analysis of compressor cascades[J]. Journal of Basic Engineering,1959,81(3): 387-397. doi: 10.1115/1.4008481
    [5]
    LIEBLEIN S. Incidence and deviation-angle correlations for compressor cascade[J]. Journal of Fluids Engineering,1960,82(3): 575-584.
    [6]
    KUS U, CHAUVIN J. A rapid method for predicting global and local performance of cascades with special emphasis on the calculation of the transition region[R]. ASME Paper 94-GT-256, 1994.
    [7]
    BANJAC M,PETROVIC M V,WIEDERMANN A. A new loss and deviation model for axial compressor inlet guide vanes[J]. Journal of Turbomachinery,2014,136(7): 071011.1-071011.13.
    [8]
    LENGANI D,SIMONI D,UBALDI M,et al. Accurate estimation of profile losses and analysis of loss generation mechanisms in a turbine cascade[J]. Journal of Turbomachinery,2017,139(12): 121007.1-121007.9.
    [9]
    NIELSEN M A. Neural networks and deep learning[M]. Cambridge, US: Determination Press, 2015.
    [10]
    WERBOS P. Beyond regression: new tools for prediction and analysis in the behavioral sciences[D]. Cambridge, US: Harvard University, 1974.
    [11]
    LECUN Y, BOSER B, DENKER J S, et al. Handwritten digit recognition with a back-propagation network[C]//Proceedings of Advances in Neural Information Processing Systems. San Francisco, US: MIT Press, 1990: 396-404.
    [12]
    SUTSKEVER I, MARTENS J, HINTON G E. Generating text with recurrent neural networks[C]// Proceedings of 28th International Conference on Machine Learning. Washington DC: PMLR, 2011: 1017-1024.
    [13]
    GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of Neural Information Processing Systems 2014. Montréal, US: MIT Press, 2014: 1-9.
    [14]
    MIRZA M, OSINDERO S. Conditional generative adversarial nets[EB/OL][2022-09-29].https://arxiv.org/abs/1411.1784.
    [15]
    WANG Shuyue,SUN Gang,CHEN Wanchun,et al. Database self-expansion based on artificial neural network: an approach in aircraft design[J]. Aerospace Science and Technology,2018,72: 77-83. doi: 10.1016/j.ast.2017.10.037
    [16]
    GAO Wenbo,ZHOU Xin,PAN Muxuan,et al. Acceleration control strategy for aero-engines based on model-free deep reinforcement learning method[J]. Aerospace Science and Technology,2022,120: 107248.1-107248.10.
    [17]
    MAGALHÃES J M,HALIL L O,KIM Y,et al. Intelligent data-driven aerodynamic analysis and optimization of morphing configurations[J]. Aerospace Science and Technology,2022,121: 107388.1-107388.15.
    [18]
    RENGANATHAN S A,MAULIK R,AHUJA J. Enhanced data efficiency using deep neural networks and Gaussian processes for aerodynamic design optimization[J]. Aerospace Science and Technology,2021,111: 106522.1-106522.15.
    [19]
    LI Jichao, ZHANG Mengqi. On deep-learning-based geometric filtering in aerodynamic shape optimization[J]. Aerospace Science and Technology, 2021, 112, 106603.1-106603.13.
    [20]
    UELSCHEN M, LAWERENZ M. Design of axial compressor airfoils with artificial neural networks and genetic algorithms[R]. AIAA 2000-2546, 2000.
    [21]
    SEKAR V,ZHANG Mengqi,SHU Chang,et al. Inverse design of airfoil using a deep convolutional neural network[J]. AIAA Journal,2019,57(3): 993-1003. doi: 10.2514/1.J057894
    [22]
    LEE S,YOU D. Data-driven prediction of unsteady flow fields over a circular cylinder using deep learning[J]. Journal of Fluid Mechanics,2019,879: 217-254. doi: 10.1017/jfm.2019.700
    [23]
    WU Jinlong,KASHINATH K,ALBERT A,et al. Enforcing statistical constraints in generative adversarial networks for modeling chaotic dynamical systems[J]. Journal of Computational. Physics,2020,406: 109209.1-109209.26.
    [24]
    ZHU Weiqiang, XU Kailai, DARVE E, et al. A general approach to seismic inversion with automatic differentiation[EB/OL].[2022-09-29].https: //arxiv.org/abs/2003.06027.
    [25]
    YOUSIF M Z,YU L,LIM H C. Physics-guided deep learning for generating turbulent inflow conditions[J]. Journal of Fluid Mechanics,2022,936: 1-25.
    [26]
    SIRIGNANO J,MACART J F,FREUND J B. DPM: a deep learning PDE augmentation method with application to large-eddy simulation[J]. Journal of Computational Physics,2020,423: 1-21.
    [27]
    RAISSI M,PERDIKARIS P,KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics,2019,378: 686-707. doi: 10.1016/j.jcp.2018.10.045
    [28]
    KARNIADAKIS G E,KEVREKIDIS I G,LU L,et al. Physics-informed machine learning[J]. Nature Reviews: Physics,2021,3: 422-440.
    [29]
    HERRIG L J, EMERY J C, ERWIN J R. Systematic two-dimensional cascade tests of NACA 65-Series compressor blades at low speeds[R]. NACA-TN-3916, 1957.
    [30]
    BANJAC M, PETROVIC M V. Development of method and computer program for multistage axial compressor design: Part Ⅰ mean line design and example cases[R]. ASME Paper GT2018-75410, 2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (422) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return