| Citation: | FENG Yunyang, SONG Xizhen, YUAN Wei, et al. Physics-informed neural networks based cascade loss model[J]. Journal of Aerospace Power, 2023, 38(7):1615-1625 doi: 10.13224/j.cnki.jasp.20220750 |
It is difficult to modify and broaden the scope of application for empirical models because of its inadequate ability to fit strong nonlinear function relationship. In order to solve these problems, a physics-informed deep learning cascade loss model of embedding the pressure distribution of cascade into neural networks was proposed. The loss prediction error decreased by 22.3% compared with empirical model for end-to-end neural networks and 37.9% compared with physics-informed model.
| [1] |
CUMPSTY N A. Compressor aerodynamics[M]. London: Longman Group, 1989.
|
| [2] |
CUMPSTY N A,GREITZER E M. Ideas and methods of turbomachinery aerodynamics: a historical view[J]. Journal of Propulsion and Power,2004,20(1): 15-26. doi: 10.2514/1.9176
|
| [3] |
AUNGIER R H. Axial-flow compressors[M]. New York: ASME Press, 2003.
|
| [4] |
LIEBLEIN S. Loss and stall analysis of compressor cascades[J]. Journal of Basic Engineering,1959,81(3): 387-397. doi: 10.1115/1.4008481
|
| [5] |
LIEBLEIN S. Incidence and deviation-angle correlations for compressor cascade[J]. Journal of Fluids Engineering,1960,82(3): 575-584.
|
| [6] |
KUS U, CHAUVIN J. A rapid method for predicting global and local performance of cascades with special emphasis on the calculation of the transition region[R]. ASME Paper 94-GT-256, 1994.
|
| [7] |
BANJAC M,PETROVIC M V,WIEDERMANN A. A new loss and deviation model for axial compressor inlet guide vanes[J]. Journal of Turbomachinery,2014,136(7): 071011.1-071011.13.
|
| [8] |
LENGANI D,SIMONI D,UBALDI M,et al. Accurate estimation of profile losses and analysis of loss generation mechanisms in a turbine cascade[J]. Journal of Turbomachinery,2017,139(12): 121007.1-121007.9.
|
| [9] |
NIELSEN M A. Neural networks and deep learning[M]. Cambridge, US: Determination Press, 2015.
|
| [10] |
WERBOS P. Beyond regression: new tools for prediction and analysis in the behavioral sciences[D]. Cambridge, US: Harvard University, 1974.
|
| [11] |
LECUN Y, BOSER B, DENKER J S, et al. Handwritten digit recognition with a back-propagation network[C]//Proceedings of Advances in Neural Information Processing Systems. San Francisco, US: MIT Press, 1990: 396-404.
|
| [12] |
SUTSKEVER I, MARTENS J, HINTON G E. Generating text with recurrent neural networks[C]// Proceedings of 28th International Conference on Machine Learning. Washington DC: PMLR, 2011: 1017-1024.
|
| [13] |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of Neural Information Processing Systems 2014. Montréal, US: MIT Press, 2014: 1-9.
|
| [14] |
MIRZA M, OSINDERO S. Conditional generative adversarial nets[EB/OL][2022-09-29].https://arxiv.org/abs/1411.1784.
|
| [15] |
WANG Shuyue,SUN Gang,CHEN Wanchun,et al. Database self-expansion based on artificial neural network: an approach in aircraft design[J]. Aerospace Science and Technology,2018,72: 77-83. doi: 10.1016/j.ast.2017.10.037
|
| [16] |
GAO Wenbo,ZHOU Xin,PAN Muxuan,et al. Acceleration control strategy for aero-engines based on model-free deep reinforcement learning method[J]. Aerospace Science and Technology,2022,120: 107248.1-107248.10.
|
| [17] |
MAGALHÃES J M,HALIL L O,KIM Y,et al. Intelligent data-driven aerodynamic analysis and optimization of morphing configurations[J]. Aerospace Science and Technology,2022,121: 107388.1-107388.15.
|
| [18] |
RENGANATHAN S A,MAULIK R,AHUJA J. Enhanced data efficiency using deep neural networks and Gaussian processes for aerodynamic design optimization[J]. Aerospace Science and Technology,2021,111: 106522.1-106522.15.
|
| [19] |
LI Jichao, ZHANG Mengqi. On deep-learning-based geometric filtering in aerodynamic shape optimization[J]. Aerospace Science and Technology, 2021, 112, 106603.1-106603.13.
|
| [20] |
UELSCHEN M, LAWERENZ M. Design of axial compressor airfoils with artificial neural networks and genetic algorithms[R]. AIAA 2000-2546, 2000.
|
| [21] |
SEKAR V,ZHANG Mengqi,SHU Chang,et al. Inverse design of airfoil using a deep convolutional neural network[J]. AIAA Journal,2019,57(3): 993-1003. doi: 10.2514/1.J057894
|
| [22] |
LEE S,YOU D. Data-driven prediction of unsteady flow fields over a circular cylinder using deep learning[J]. Journal of Fluid Mechanics,2019,879: 217-254. doi: 10.1017/jfm.2019.700
|
| [23] |
WU Jinlong,KASHINATH K,ALBERT A,et al. Enforcing statistical constraints in generative adversarial networks for modeling chaotic dynamical systems[J]. Journal of Computational. Physics,2020,406: 109209.1-109209.26.
|
| [24] |
ZHU Weiqiang, XU Kailai, DARVE E, et al. A general approach to seismic inversion with automatic differentiation[EB/OL].[2022-09-29].https: //arxiv.org/abs/2003.06027.
|
| [25] |
YOUSIF M Z,YU L,LIM H C. Physics-guided deep learning for generating turbulent inflow conditions[J]. Journal of Fluid Mechanics,2022,936: 1-25.
|
| [26] |
SIRIGNANO J,MACART J F,FREUND J B. DPM: a deep learning PDE augmentation method with application to large-eddy simulation[J]. Journal of Computational Physics,2020,423: 1-21.
|
| [27] |
RAISSI M,PERDIKARIS P,KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics,2019,378: 686-707. doi: 10.1016/j.jcp.2018.10.045
|
| [28] |
KARNIADAKIS G E,KEVREKIDIS I G,LU L,et al. Physics-informed machine learning[J]. Nature Reviews: Physics,2021,3: 422-440.
|
| [29] |
HERRIG L J, EMERY J C, ERWIN J R. Systematic two-dimensional cascade tests of NACA 65-Series compressor blades at low speeds[R]. NACA-TN-3916, 1957.
|
| [30] |
BANJAC M, PETROVIC M V. Development of method and computer program for multistage axial compressor design: Part Ⅰ mean line design and example cases[R]. ASME Paper GT2018-75410, 2018.
|