Turn off MathJax
Article Contents
TAN Tianjun, ZHANG Bin, LI Zhiqiang, et al. Structural parameters of pintle on transcritical combustion efficiency of liquid oxygen/methane engine[J]. Journal of Aerospace Power, 2023, 39(X):20220825 doi: 10.13224/j.cnki.jasp.20220825
Citation: TAN Tianjun, ZHANG Bin, LI Zhiqiang, et al. Structural parameters of pintle on transcritical combustion efficiency of liquid oxygen/methane engine[J]. Journal of Aerospace Power, 2023, 39(X):20220825 doi: 10.13224/j.cnki.jasp.20220825

Structural parameters of pintle on transcritical combustion efficiency of liquid oxygen/methane engine

doi: 10.13224/j.cnki.jasp.20220825
  • Received Date: 2022-10-31
    Available Online: 2023-12-21
  • To study the effects of pintle structural parameters on the combustion efficiency in transcritical combustion, a standard k-ε turbulence model and a non-adiabatic stable diffusion flamelet model were utilized to numerically study the transcritical combustion of an LOX/CH4 pintle engine considering the real gas properties of fluid. The study analyzed the impact of various methods for calculating physical properties on the flow field within the thrust chamber, and the effects of radial and axial annular seam width of pintle injector on engine combustion efficiency were analyzed. The results showed that the size of both the central recirculation zone and the high temperature zone was reduced when considering the transcritical effect. Within a certain range, as the radial annular seam width increased, the combustion efficiency initially decreased and then increased, as the axial annular seam width increased, the combustion efficiency decreased. A greater combustion efficiency can be achieved by reducing the axial annular seam width and increasing the radial annular seam width. When the total momentum ratio was less than 1, increasing axial momentum can effectively improve mixing. However, if the total momentum ratio was greater than 1, increasing axial momentum can hinder the improvement of mixing. The combustion efficiency decreased with the increase of the total momentum ratio. When the total momentum ratio for different operating conditions was similar, the operating condition with a higher momentum ratio exhibited a higher combustion efficiency.

     

  • loading
  • [1]
    张小平,严伟. 蓝箭航天液氧甲烷发动机研制进展[J]. 上海航天,2019,36(6): 83-87. ZHANG Xiaoping,YAN Wei. The development of land space liquid oxygen/methane rocket engine[J]. Aerospace Shanghai,2019,36(6): 83-87. (in Chinese

    ZHANG Xiaoping, YAN Wei. The development of land space liquid oxygen/methane rocket engine[J]. Aerospace Shanghai, 2019, 36(6): 83-87. (in Chinese)
    [2]
    姚照辉,范家璇. 变推力液体火箭发动机推力调节技术研究综述及发展趋势[J]. 推进技术,2022,43(9): 6-19. YAO Zhaohui,FAN Jiaxuan. Review and trend for thrust regulation technology of variable-thrust liquid rocket engine[J]. Journal of Propulsion Technology,2022,43(9): 6-19. (in Chinese

    YAO Zhaohui, FAN Jiaxuan. Review and trend for thrust regulation technology of variable-thrust liquid rocket engine[J]. Journal of Propulsion Technology, 2022, 43(9): 6-19. (in Chinese)
    [3]
    高朝辉,刘宇,肖肖,等. 垂直着陆重复使用运载火箭对动力技术的挑战[J]. 火箭推进,2015,41(3): 1-6,45. GAO Zhaohui,LIU Yu,XIAO Xiao,et al. Challenge to propulsion technology for vertical landing reusable launch vehicle[J]. Journal of Rocket Propulsion,2015,41(3): 1-6,45. (in Chinese

    GAO Zhaohui, LIU Yu, XIAO Xiao, et al. Challenge to propulsion technology for vertical landing reusable launch vehicle[J]. Journal of Rocket Propulsion, 2015, 41(3): 1-6, 45. (in Chinese)
    [4]
    岳春国,李进贤,冯喜平,等. 针栓式变推力火箭发动机技术现状与发展探索[J]. 世界科技研究与发展,2008,30(5): 609-612. YUE Chunguo,LI Jinxian,FENG Xiping,et al. The research on technology actuality and development of pintle injector variable thrust rocket engine[J]. World Sci-Tech R & D,2008,30(5): 609-612. (in Chinese

    YUE Chunguo, LI Jinxian, FENG Xiping, et al. The research on technology actuality and development of pintle injector variable thrust rocket engine[J]. World Sci-Tech R & D, 2008, 30(5): 609-612. (in Chinese)
    [5]
    GILROY R,SACKHEIM R. The lunar module descent engine: a historical summary[R]. AIAA 1989-2385,1989.
    [6]
    雷娟萍,兰晓辉,章荣军,等. 嫦娥三号探测器7 500 N变推力发动机研制[J]. 中国科学: 技术科学,2014,44(6): 569-575. LEI Juanping,LAN Xiaohui,ZHANG Rongjun,et al. The development of 7 500 N variable thrust engine for Chang’E-3[J]. Scientia Sinica (Technologica),2014,44(6): 569-575. (in Chinese doi: 10.1360/092014-52

    LEI Juanping, LAN Xiaohui, ZHANG Rongjun, et al. The development of 7 500 N variable thrust engine for Chang’E-3[J]. Scientia Sinica (Technologica), 2014, 44(6): 569-575. (in Chinese) doi: 10.1360/092014-52
    [7]
    张雪松. 猎鹰火箭的基础: 不断升级的梅林发动机[J]. 卫星与网络,2017(6): 40-41. ZHANG Xuesong. The foundation of Falcon rocket: the ever-upgrading Merlin engine[J]. Satellite & Network,2017(6): 40-41. (in Chinese

    ZHANG Xuesong. The foundation of Falcon rocket: the ever-upgrading Merlin engine[J]. Satellite & Network, 2017(6): 40-41. (in Chinese)
    [8]
    王凯,雷凡培,张波涛,等. 针栓式喷注单元雾化角模型分析[J]. 航空学报,2020,41(10): 123622. WANG Kai,LEI Fanpei,ZHANG Botao,et al. Analysis on spray angle model for pintle injector element[J]. Acta Aeronautica et Astronautica Sinica,2020,41(10): 123622. (in Chinese

    WANG Kai, LEI Fanpei, ZHANG Botao, et al. Analysis on spray angle model for pintle injector element[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123622. (in Chinese)
    [9]
    王凯,雷凡培,杨岸龙,等. 针栓式喷注单元膜束撞击雾化混合过程数值模拟[J]. 航空学报,2020,41(9): 123802. WANG Kai,LEI Fanpei,YANG Anlong,et al. Numerical simulation of spray and mixing process of impingement between sheet and jet in pintle injector element[J]. Acta Aeronautica et Astronautica Sinica,2020,41(9): 123802. (in Chinese

    WANG Kai, LEI Fanpei, YANG Anlong, et al. Numerical simulation of spray and mixing process of impingement between sheet and jet in pintle injector element[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 123802. (in Chinese)
    [10]
    方昕昕,沈赤兵,康忠涛. 无旋锥形液膜表面波不稳定性试验研究[J]. 推进技术,2016,37(10): 1893-1899. FANG Xinxin,SHEN Chibing,KANG Zhongtao. Experimental research of instability of surface wave on irrotational conical sheets[J]. Journal of Propulsion Technology,2016,37(10): 1893-1899. (in Chinese

    FANG Xinxin, SHEN Chibing, KANG Zhongtao. Experimental research of instability of surface wave on irrotational conical sheets[J]. Journal of Propulsion Technology, 2016, 37(10): 1893-1899. (in Chinese)
    [11]
    方昕昕,沈赤兵,成鹏,等. 针栓式喷注器雾化特性试验[J]. 航空动力学报,2017,32(8): 1853-1860. FANG Xinxin,SHEN Chibing,CHENG Peng,et al. Experiment on atomization characteristics of pintle injectors[J]. Journal of Aerospace Power,2017,32(8): 1853-1860. (in Chinese

    FANG Xinxin, SHEN Chibing, CHENG Peng, et al. Experiment on atomization characteristics of pintle injectors[J]. Journal of Aerospace Power, 2017, 32(8): 1853-1860. (in Chinese)
    [12]
    SON M,YU K,KOO J,et al. Effects of momentum ratio and Weber number on spray half angles of liquid controlled pintle injector[J]. Journal of Thermal Science,2015,24(1): 37-43. doi: 10.1007/s11630-015-0753-7
    [13]
    SAKAKI K,CHOI M,NAKAYA S,et al. Fundamental combustion characteristics of ethanol/liquid oxygen rocket engine combustor with planar pintle-type injector[J]. Transactions of the Japan Society for Aeronautical and Space Sciences,2015,58(1): 15-22. doi: 10.2322/tjsass.58.15
    [14]
    SAKAKI K,KAKUDO H,NAKAYA S,et al. Combustion characteristics of ethanol/liquid-oxygen rocket-engine combustor with planar pintle injector[J]. Journal of Propulsion and Power,2017,33(2): 514-521. doi: 10.2514/1.B36144
    [15]
    SAKAKI K,FUNAHASHI T,NAKAYA S,et al. Longitudinal combustion instability of a pintle injector for a liquid rocket engine combustor[J]. Combustion and Flame,2018,194: 115-127. doi: 10.1016/j.combustflame.2018.04.017
    [16]
    SON M,RADHAKRISHNAN K,YOON Y,et al. Numerical study on the combustion characteristics of a fuel-centered pintle injector for methane rocket engines[J]. Acta Astronautica,2017,135: 139-149. doi: 10.1016/j.actaastro.2017.02.005
    [17]
    FANG Xinxin,SHEN Chibing. Study on atomization and combustion characteristics of LOX/methane pintle injectors[J]. Acta Astronautica,2017,136: 369-379. doi: 10.1016/j.actaastro.2017.03.025
    [18]
    方昕昕. 液氧/甲烷针栓式喷注器雾化及燃烧特性研究[D]. 长沙: 国防科技大学,2015: 98-101. FANG Xinxin. Study on the atomization and combustion characteristics of LOX/methane pintle injectors[D]. Changsha: National University of Defense Technology,2015: 98-101. (in Chinese

    FANG Xinxin. Study on the atomization and combustion characteristics of LOX/methane pintle injectors[D]. Changsha: National University of Defense Technology, 2015: 98-101. (in Chinese)
    [19]
    咸裕丰,孙冰. 针栓式喷注器液氧/甲烷发动机燃烧特性数值仿真[J]. 推进技术,2021,42(7): 1561-1569. XIAN Yufeng,SUN Bing. Numerical simulation of combustion characteristics of LOX/CH4 engine with pintle injector[J]. Journal of Propulsion Technology,2021,42(7): 1561-1569. (in Chinese

    XIAN Yufeng, SUN Bing. Numerical simulation of combustion characteristics of LOX/CH4 engine with pintle injector[J]. Journal of Propulsion Technology, 2021, 42(7): 1561-1569. (in Chinese)
    [20]
    SEEBALD P,SOJKA P E. Supercritical and transcritical injection[M]//ASHGRIZ N. Handbook of Atomization and Sprays. Boston,MA: Springer,2011: 255-261.
    [21]
    谢远,聂万胜,姜传金,等. 针栓式喷嘴喷雾燃烧特性研究进展[J]. 推进技术,2022,43(7): 47-65. XIE Yuan,NIE Wansheng,JIANG Chuanjin,et al. Research progress on spray combustion characteristics of pintle injector[J]. Journal of Propulsion Technology,2022,43(7): 47-65. (in Chinese

    XIE Yuan, NIE Wansheng, JIANG Chuanjin, et al. Research progress on spray combustion characteristics of pintle injector[J]. Journal of Propulsion Technology, 2022, 43(7): 47-65. (in Chinese)
    [22]
    蔡国飙,李家文,田爱梅,等. 液体火箭发动机设计[M]. 北京: 北京航空航天大学出版社,2011: 80-111.
    [23]
    安鹏,姚世强,王京丽,等. 针栓式喷注器的特点及设计方法[J]. 导弹与航天运载技术,2016(3): 50-54. AN Peng,YAO Shiqiang,WANG Jingli,et al. Characteristics and design of pintle injector[J]. Missiles and Space Vehicles,2016(3): 50-54. (in Chinese

    AN Peng, YAO Shiqiang, WANG Jingli, et al. Characteristics and design of pintle injector[J]. Missiles and Space Vehicles, 2016(3): 50-54. (in Chinese)
    [24]
    POLING B E,PRAUSNITZ J M,O’CONNELL J P. 气液物性估算手册[M]. 赵红玲,王凤坤,陈圣坤,译. 第5版. 北京: 化学工业出版社,2006: 73-411.
    [25]
    MENG Hua,YANG V. A unified treatment of general fluid thermodynamics and its application to a preconditioning scheme[J]. Journal of Computational Physics,2003,189(1): 277-304. doi: 10.1016/S0021-9991(03)00211-0
    [26]
    向纪鑫,张萌,李志强,等. 液氧/甲烷液体火箭发动机推力室跨临界液膜冷却数值模拟[J]. 推进技术,2022,43(11): 291-302. XIANG Jixin,ZHANG Meng,LI Zhiqiang,et al. Numerical simulation of transcritical liquid film cooling in LOX/methane liquid rocket engine thrust chambers[J]. Journal of Propulsion Technology,2022,43(11): 291-302. (in Chinese

    XIANG Jixin, ZHANG Meng, LI Zhiqiang, et al. Numerical simulation of transcritical liquid film cooling in LOX/methane liquid rocket engine thrust chambers[J]. Journal of Propulsion Technology, 2022, 43(11): 291-302. (in Chinese)
    [27]
    KIM T,KIM Y,KIM S K. Effects of pressure and inlet temperature on coaxial gaseous methane/liquid oxygen turbulent jet flame under transcritical conditions[J]. The Journal of Supercritical Fluids,2013,81: 164-174. doi: 10.1016/j.supflu.2013.05.011
    [28]
    SINGLA G,SCOUFLAIRE P,ROLON C,et al. Transcritical oxygen/transcritical or supercritical methane combustion[J]. Proceedings of the Combustion Institute,2005,30(2): 2921-2928. doi: 10.1016/j.proci.2004.08.063
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (18) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return