Turn off MathJax
Article Contents
LI Chengrui, JIANG Zhongzheng, WU Changju, et al. Hypersonic modification and verification of Langtry-Menter transition model[J]. Journal of Aerospace Power, 2024, 39(X):20220970 doi: 10.13224/j.cnki.jasp.20220970
Citation: LI Chengrui, JIANG Zhongzheng, WU Changju, et al. Hypersonic modification and verification of Langtry-Menter transition model[J]. Journal of Aerospace Power, 2024, 39(X):20220970 doi: 10.13224/j.cnki.jasp.20220970

Hypersonic modification and verification of Langtry-Menter transition model

doi: 10.13224/j.cnki.jasp.20220970
  • Received Date: 2022-12-22
    Available Online: 2024-02-29
  • For the prediction of hypersonic boundary layer transition flow, three types of high-speed modified methods were studied based on the traditional Langtry-Menter transition model and SST (shear stress transport) turbulence model. The modification of hypersonic cross-flow criterion, compressibility modification of turbulent kinetic energy pressure dilatation term and modification of pressure gradient coefficient were introduced into the original transition model to expand the simulation capacity of the model in hypersonic flow. The modified transition model was validated by using several typical cases: supersonic plate, hypersonic cone with zero angle of attack, hypersonic cone with small angle of attack and hypersonic HIFIRE-5. The results showed that the predicted transition-start position, transition-end position and transition zone length of the modified model were basically consistent with the experimental results. The calculated results of skin friction and heat flux were basically consistent with the experimental measurement data. The modified transition model performed well in predicting hypersonic transition flow.

     

  • loading
  • [1]
    陈坚强,涂国华,张毅锋,等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报,2017,35(3): 311-337. CHEN Jianqiang,TU Guohua,ZHANG Yifeng,et al. Hypersnonic boundary layer transition: what we know,where shall we go[J]. Acta Aerodynamica Sinica,2017,35(3): 311-337. (in Chinese

    CHEN Jianqiang, TU Guohua, ZHANG Yifeng, et al. Hypersnonic boundary layer transition: what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3): 311-337. (in Chinese)
    [2]
    SPALART P R. Strategies for turbulence modelling and simulations[J]. The International Journal of Heat and Fluid Flow,2000,21(3): 252-263. doi: 10.1016/S0142-727X(00)00007-2
    [3]
    SARIC W. Physical description of boundary-layer transition: experimental evidence[R]. AGARD-CP-793,1994.
    [4]
    黄章峰,肖凌晨,罗纪生. 超声速边界层转捩预测e N方法及其软件开发[J]. 空气动力学学报,2018,36(2): 279-285. HUANG Zhangfeng,XIAO Lingchen,LUO Jisheng. Transition prediction e N method and its software development for supersonic boundary layers[J]. Acta Aerodynamica Sinica,2018,36(2): 279-285. (in Chinese

    HUANG Zhangfeng, XIAO Lingchen, LUO Jisheng. Transition prediction eN method and its software development for supersonic boundary layers[J]. Acta Aerodynamica Sinica, 2018, 36(2): 279-285. (in Chinese)
    [5]
    罗纪生. 高超声速边界层的转捩及预测[J]. 航空学报,2015,36(1): 357-372. LUO Jisheng. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica,2015,36(1): 357-372. (in Chinese

    LUO Jisheng. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 357-372. (in Chinese)
    [6]
    于高通,罗纪生. 三维高超声速边界层中e N方法的应用[J]. 航空动力学报,2014,29(9): 2047-2054. YU Gaotong,LUO Jisheng. Application of e N method in three-dimensional hypersonic boundary layers[J]. Journal of Aerospace Power,2014,29(9): 2047-2054. (in Chinese

    YU Gaotong, LUO Jisheng. Application of eN method in three-dimensional hypersonic boundary layers[J]. Journal of Aerospace Power, 2014, 29(9): 2047-2054. (in Chinese)
    [7]
    杨武兵,沈清,朱德华,等. 高超声速边界层转捩研究现状与趋势[J]. 空气动力学学报,2018,36(2): 180-195. YANG Wubing,SHEN Qing,ZHU Dehua,et al. Tendency and current status of hypersonic boundary layer transition[J]. Acta Aerodynamica Sinica,2018,36(2): 180-195. (in Chinese

    YANG Wubing, SHEN Qing, ZHU Dehua, et al. Tendency and current status of hypersonic boundary layer transition[J]. Acta Aerodynamica Sinica, 2018, 36(2): 180-195. (in Chinese)
    [8]
    MENTER F R,LANGTRY R B,LIKKI S R,et al. A correlation-based transition model using local variables: Part Ⅰ model formulation[J]. Journal of Turbomachinery,2006,128(3): 413-422. doi: 10.1115/1.2184352
    [9]
    LANGTRY R B,MENTER F R,LIKKI S R,et al. A correlation-based transition model using local variables: Part Ⅱ test cases and industrial applications[J]. Journal of Turbomachinery,2006,128(3): 423-434. doi: 10.1115/1.2184353
    [10]
    周玲,阎超,郝子辉,等. 转捩模式与转捩准则预测高超声速边界层流动[J]. 航空学报,2016,37(4): 1092-1102. ZHOU Ling,YAN Chao,HAO Zihui,et al. Transition model and transition criteria for hypersonic boundary layer flow[J]. Acta Aeronautica et Astronautica Sinica,2016,37(4): 1092-1102. (in Chinese

    ZHOU Ling, YAN Chao, HAO Zihui, et al. Transition model and transition criteria for hypersonic boundary layer flow[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4): 1092-1102. (in Chinese)
    [11]
    YI M,ZHAO H,LE J. Hypersonic natural and forced transition simulation by correlation-based intermittency[R]. AIAA 2017-2337,2017.
    [12]
    LANGTRY R B,MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal,2009,47(12): 2894-2906. doi: 10.2514/1.42362
    [13]
    LANGTRY R B,SENGUPTA K,YEH D T,et al. Extending the γ-reθt local correlation based transition model for crossflow effects[R]. AIAA 2015-2474,2015.
    [14]
    ZHOU L,LI R,HAO Z,et al. Improved k-ω-γ model for crossflow-induced transition prediction in hypersonic flow[J]. International Journal of Heat and Mass Transfer,2017,115: 115-130.
    [15]
    QIAO L,XU J,BAI J,et al. Fully local transition closure model for hypersonic boundary layers considering crossflow effects[J]. AIAA Journal,2021,59(5): 1692-1706. doi: 10.2514/1.J059765
    [16]
    向星皓,张毅锋,袁先旭,等. C-γ-Re θ高超声速三维边界层转捩预测模型[J]. 航空学报,2021,42(9): 188-196. XIANG Xinghao,ZHANG Yifeng,YUAN Xianxu,et al. C-γ-Re θ model for hypersonic three-dimensional boundary layer transition prediction[J]. Acta Aeronautica et Astronautica Sinica,2021,42(9): 188-196. (in Chinese

    XIANG Xinghao, ZHANG Yifeng, YUAN Xianxu, et al. C-γ-Reθ model for hypersonic three-dimensional boundary layer transition prediction[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 188-196. (in Chinese)
    [17]
    XIANG X,CHEN J,YUAN X,et al. Cross-flow transition model predictions of hypersonic transition research vehicle[J]. Aerospace Science and Technology,2022,122: 107327. doi: 10.1016/j.ast.2022.107327
    [18]
    KRISHNAMURTY V S,SHYY W. Study of compressibility modifications to the k−ε turbulence model[J]. Physics of Fluids,1997,9(9): 2769-2788. doi: 10.1063/1.869468
    [19]
    SARKAR S. The pressure-dilatation correlation in compressible flows[J]. Physics of Fluids A: Fluid Dynamics,1992,4(12): 2674-2682. doi: 10.1063/1.858454
    [20]
    张毅锋,何琨,张益荣,等. Menter转捩模型在高超声速流动模拟中的改进及验证[J]. 宇航学报. 2016,37(4): 397-402. ZHANG Yifeng,HE Kun,ZHANG Yirong,et al. Improvement and validation of Menter’s transition model for hypersonic flow simulation[J]. Journal of Astronautics,2016,37(4): 397-402. (in Chinese

    ZHANG Yifeng, HE Kun, ZHANG Yirong, et al. Improvement and validation of Menter’s transition model for hypersonic flow simulation[J]. Journal of Astronautics, 2016, 37(4): 397-402. (in Chinese)
    [21]
    ZHANG Y,ZHANG Y,CHEN J,et al. Numerical simulations of hypersonic boundary layer transition based on the flow solver Chant 2.0[R]. AIAA-2017-2409,2017.
    [22]
    JIANG L,CHOUDHARI M,CHANG C,et al. Numerical simulations of laminar-turbulent transition in supersonic boundary layer[R]. AIAA 2006-3224,2006.
    [23]
    BERGER K T,GREENE F A,KIMMEL R,et al. Aerothermodynamic testing and boundary-layer trip sizing of the HIFiRE flight 1 vehicle[J]. Journal of spacecraft and rockets,2008,45(6): 1117-1124. doi: 10.2514/1.38722
    [24]
    陈久芬,凌岗,张庆虎,等. 7°尖锥高超声速边界层转捩红外测量实验[J]. 实验流体力学,2020,34(1): 60-66. CHEN Jiufen,LING Gang,ZHANG Qinghu,et al. Infrared thermography experiments of hypersonic boundary-layer transition on a 7° half-angle sharp cone[J]. Journal of Experiments in Fluid Mechanics,2020,34(1): 60-66. (in Chinese doi: 10.11729/syltlx20180172

    CHEN Jiufen, LING Gang, ZHANG Qinghu, et al. Infrared thermography experiments of hypersonic boundary-layer transition on a 7° half-angle sharp cone[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 60-66. (in Chinese) doi: 10.11729/syltlx20180172
    [25]
    胡永煌. 应用于高超尖锥转捩的SED-SLT湍流模型研究[D]. 北京: 北京大学,2020. HU Yonghuang. The SED-SLT model applied to transitional hypersonic boundary layers around a sharp cone[D]. Beijing: Peking University,2020.(in Chinese

    HU Yonghuang. The SED-SLT model applied to transitional hypersonic boundary layers around a sharp cone[D]. Beijing: Peking University, 2020.(in Chinese)
    [26]
    JULIANO T,SCHNEIDER S. Instability and transition on the HIFiRE-5 in a Mach 6 quiet tunnel[R]. AIAA 2010-5004,2010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (37) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return