Volume 39 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
ZHANG Kangzhi. Fault diagnosis method of rolling bearing based on joint LLE and SSR[J]. Journal of Aerospace Power, 2024, 39(7):20230263 doi: 10.13224/j.cnki.jasp.20230263
Citation: ZHANG Kangzhi. Fault diagnosis method of rolling bearing based on joint LLE and SSR[J]. Journal of Aerospace Power, 2024, 39(7):20230263 doi: 10.13224/j.cnki.jasp.20230263

Fault diagnosis method of rolling bearing based on joint LLE and SSR

doi: 10.13224/j.cnki.jasp.20230263
  • Received Date: 2023-04-21
    Available Online: 2024-02-19
  • A rolling bearing fault diagnosis method based on joint locally linear embedding and sparse self-representation (JLLESSR) and parameter-optimized support vector machine is proposed for rolling bearing vibration signals with strong nonlinearity and containing more redundant and irrelevant features, which leads to difficulties in extracting essential features and fault identification. The method constructs a unified feature extraction framework, relying on local linear embedding (LLE) to mine the local geometric structure of high dimensional data, and self-representation to mine the global geometric structure of high dimensional data in low dimensional space, to obtain the embedding features characterizing the operating state of rolling bearings. Then, the obtained features are fed into a cross-validation support vector machine (CV-SVM) for fault identification. Finally, the proposed method is tested on a rolling bearing fault data set, and the experimental results show that the proposed method can effectively identify different types of rolling bearing faults, and the fault diagnosis accuracy can reach 98.5%.

     

  • loading
  • [1]
    李昕燃,靳伍银. 基于改进麻雀算法优化支持向量机的滚动轴承故障诊断研究[J]. 振动与冲击,2023,42(6): 106-114. LI Xinran,JIN Wuyin. Fault diagnosis of rolling bearings based on ISSA-SVM[J]. Journal of Vibration and Shock,2023,42(6): 106-114. (in Chinese

    LI Xinran, JIN Wuyin. Fault diagnosis of rolling bearings based on ISSA-SVM[J]. Journal of Vibration and Shock, 2023, 42(6): 106-114. (in Chinese)
    [2]
    李俊卿,胡晓东,耿继亚,等. 基于ACGAN和模型融合的电机轴承故障诊断方法[J]. 电机与控制应用,2023,50(2): 91-96. LI Junqing,HU Xiaodong,GENG Jiya,et al. Fault diagnosis method of motor bearing based on ACGAN and model fusion[J]. Electric Machines & Control Application,2023,50(2): 91-96. (in Chinese doi: 10.12177/emca.2022.157

    LI Junqing, HU Xiaodong, GENG Jiya, et al. Fault diagnosis method of motor bearing based on ACGAN and model fusion[J]. Electric Machines & Control Application, 2023, 50(2): 91-96. (in Chinese) doi: 10.12177/emca.2022.157
    [3]
    殷海双,胡泽彪,刘远红,等. 基于鲁棒局部线性嵌入投票的轴承故障诊断[J]. 组合机床与自动化加工技术,2021(8): 81-84,89. YIN Haishuang,HU Zebiao,LIU Yuanhong,et al. Bearing fault diagnosis based on robust locally linear embedded vote[J]. Modular Machine Tool & Automatic Manufacturing Technique,2021(8): 81-84,89. (in Chinese

    YIN Haishuang, HU Zebiao, LIU Yuanhong, et al. Bearing fault diagnosis based on robust locally linear embedded vote[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021(8): 81-84, 89. (in Chinese)
    [4]
    ROWEIS S T,SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science,2000,290(5500): 2323-2326. doi: 10.1126/science.290.5500.2323
    [5]
    WANG Xiang,ZHENG Yuan,ZHAO Zhenzhou,et al. Bearing fault diagnosis based on statistical locally linear embedding[J]. Sensors,2015,15(7): 16225-16247. doi: 10.3390/s150716225
    [6]
    ZHANG Yansheng,YE Dong,LIU Yuanhong,et al. Machinery fault diagnosis via an improved multi-linear subspace and locally linear embedding[J]. Transactions of the Institute of Measurement and Control,2018,40(14): 4014-4026. doi: 10.1177/0142331217739688
    [7]
    ZHANG Xingwu,YU Xiaolei,LIU Yilong,et al. Adaptive neighborhood selection based on locally linear embedding for the degradation index construction of traction motor bearing[J]. Measurement Science and Technology,2021,32(11): 115123. doi: 10.1088/1361-6501/ac18a5
    [8]
    LIU Guohong,LI Xiaomeng,WANG Cong,et al. Hessian locally linear embedding of PMU data for efficient fault detection in power systems[J]. IEEE Transactions on Instrumentation and Measurement,2022,71: 3502704.
    [9]
    ZHANG Yansheng,YE Dong,LIU Yuanhong. Robust locally linear embedding algorithm for machinery fault diagnosis[J]. Neurocomputing,2018,273: 323-332. doi: 10.1016/j.neucom.2017.07.048
    [10]
    LIU Yuanhong,HU Zebiao,ZHANG Yansheng. Bearing feature extraction using multi-structure locally linear embedding[J]. Neurocomputing,2021,428: 280-290. doi: 10.1016/j.neucom.2020.11.048
    [11]
    LIU Yuanhong,HU Zebiao,ZHANG Yansheng. Symmetric positive definite manifold learning and its application in fault diagnosis[J]. Neural Networks,2022,147: 163-174. doi: 10.1016/j.neunet.2021.12.013
    [12]
    王贡献,张淼,胡志辉,等. 基于多尺度均值排列熵和参数优化支持向量机的轴承故障诊断[J]. 振动与冲击,2022,41(1): 221-228. WANG Gongxian,ZHANG Miao,HU Zhihui,et al. Bearing fault diagnosis based on multi-scale mean permutation entropy and parametric optimization SVM[J]. Journal of Vibration and Shock,2022,41(1): 221-228. (in Chinese

    WANG Gongxian, ZHANG Miao, HU Zhihui, et al. Bearing fault diagnosis based on multi-scale mean permutation entropy and parametric optimization SVM[J]. Journal of Vibration and Shock, 2022, 41(1): 221-228. (in Chinese)
    [13]
    王一鹏,陈学振,李连玉. 基于小波包混合特征和支持向量机的机床主轴轴承故障诊断研究[J]. 电子测量与仪器学报,2021,35(2): 59-64. WANG Yipeng,CHEN Xuezhen,LI Lianyu. Research on fault diagnosis of machine spindle bearing based on wavelet packet mixing feature and SVM[J]. Journal of Electronic Measurement and Instrumentation,2021,35(2): 59-64. (in Chinese

    WANG Yipeng, CHEN Xuezhen, LI Lianyu. Research on fault diagnosis of machine spindle bearing based on wavelet packet mixing feature and SVM[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(2): 59-64. (in Chinese)
    [14]
    史庆军,郭晓振,刘德胜. 基于特征量融合和支持向量机的轴承故障诊断[J]. 电子测量与仪器学报,2019,33(10): 104-111. SHI Qingjun,GUO Xiaozhen,LIU Desheng. Bearing fault diagnosis based on feature fusion and support vector machine[J]. Journal of Electronic Measurement and Instrumentation,2019,33(10): 104-111. (in Chinese

    SHI Qingjun, GUO Xiaozhen, LIU Desheng. Bearing fault diagnosis based on feature fusion and support vector machine[J]. Journal of Electronic Measurement and Instrumentation, 2019, 33(10): 104-111. (in Chinese)
    [15]
    HU Zebiao,YIN Haishuang,LIU Yuanhong. Locally linear embedding vote: a novel filter method for feature selection[J]. Measurement,2022,190: 110535. doi: 10.1016/j.measurement.2021.110535
    [16]
    梁睿君,冉文丰,余传粮,等. 基于CWT-CNN的齿轮箱运行故障状态识别[J]. 航空动力学报,2021,36(12): 2465-2473. LIANG Ruijun,RAN Wenfeng,YU Chuanliang,et al. Recognition of gearbox operation fault state based on CWT-CNN[J]. Journal of Aerospace Power,2021,36(12): 2465-2473. (in Chinese

    LIANG Ruijun, RAN Wenfeng, YU Chuanliang, et al. Recognition of gearbox operation fault state based on CWT-CNN[J]. Journal of Aerospace Power, 2021, 36(12): 2465-2473. (in Chinese)
    [17]
    蒋忆睿,裴洋,陈磊,等. 多局部约束自表示的谱聚类算法[J]. 计算机工程与应用,2020,56(11): 172-178. JIANG Yirui,PEI Yang,CHEN Lei,et al. Multiple locality-constrained self-representation for spectral clustering[J]. Computer Engineering and Applications,2020,56(11): 172-178. (in Chinese doi: 10.3778/j.issn.1002-8331.1904-0087

    JIANG Yirui, PEI Yang, CHEN Lei, et al. Multiple locality-constrained self-representation for spectral clustering[J]. Computer Engineering and Applications, 2020, 56(11): 172-178. (in Chinese) doi: 10.3778/j.issn.1002-8331.1904-0087
    [18]
    LIU Huawen,XU Xiaodan,LI Enhui,et al. Anomaly detection with representative neighbors[J]. IEEE Transactions on Neural Networks and Learning Systems,2023,34(6): 2831-2841. doi: 10.1109/TNNLS.2021.3109898
    [19]
    ABDI H,WILLIAMS L J. Principal component analysis[J]. Wiley Interdisciplinary Reviews: Computational Statistics,2010,2(4): 433-459. doi: 10.1002/wics.101
    [20]
    李红贤,韩延,吴敬涛,等. 基于ICA包络增强MEMD的滚动轴承故障诊断[J]. 航空动力学报,2021,36(2): 405-412. LI Hongxian,HAN Yan,WU Jingtao,et al. Rolling bearing fault diagnosis based on MEMD with ICA envelop enhancement[J]. Journal of Aerospace Power,2021,36(2): 405-412. (in Chinese

    LI Hongxian, HAN Yan, WU Jingtao, et al. Rolling bearing fault diagnosis based on MEMD with ICA envelop enhancement[J]. Journal of Aerospace Power, 2021, 36(2): 405-412. (in Chinese)
    [21]
    余志锋,熊邦书,李新民,等. 基于改进的SqueezeNet直升机滚动轴承故障诊断[J]. 航空动力学报,2022,37(6): 1162-1170. YU Zhifeng,XIONG Bangshu,LI Xinmin,et al. Fault diagnosis of helicopter rolling bearing based on improved SqueezeNet[J]. Journal of Aerospace Power,2022,37(6): 1162-1170. (in Chinese

    YU Zhifeng, XIONG Bangshu, LI Xinmin, et al. Fault diagnosis of helicopter rolling bearing based on improved SqueezeNet[J]. Journal of Aerospace Power, 2022, 37(6): 1162-1170. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (19) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return