Volume 39 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
MEN Yubin, ZHENG Longxi, CHAI Xin, et al. Experimental study on the outlet temperature distribution of double swirler combustor[J]. Journal of Aerospace Power, 2024, 39(6):20230423 doi: 10.13224/j.cnki.jasp.20230423
Citation: MEN Yubin, ZHENG Longxi, CHAI Xin, et al. Experimental study on the outlet temperature distribution of double swirler combustor[J]. Journal of Aerospace Power, 2024, 39(6):20230423 doi: 10.13224/j.cnki.jasp.20230423

Experimental study on the outlet temperature distribution of double swirler combustor

doi: 10.13224/j.cnki.jasp.20230423
  • Received Date: 2023-06-26
    Available Online: 2024-01-16
  • The double swirler full annual combustor was taken as the experiment object, the outlet temperature distribution under different experiment conditions was compared and analyzed under high temperature/high pressure, high temperature/medium pressure and engine experiment conditions. The experimental schemes with annular bleed and simulated nozzle were designed to simulate the boundary conditions of the engine, and the outlet temperature distribution under different experimental conditions was analyzed. The experimental results showed that the outlet temperature distribution under the medium and high pressure experimental conditions was basically the same, and the hot spot area was basically the same; the outlet temperature distribution level of the middle pressure experiment was obviously better than that of the high- pressure experiment; the temperature distribution curve of high-pressure experiment was in the form of central peak, while that of medium pressure experiment was not obvious. The designed high-pressure experiment outlet temperature distribution law and value were closer to the engine experiment results; compared with the high-pressure experiment, the outlet temperature distribution value of the medium pressure experiment designed regularly had a proportional coefficient of 1.3—1.4.

     

  • loading
  • [1]
    丁国玉,何小民,赵自强,等. 油气比及进口参数对三级旋流器燃烧室性能的影响[J]. 航空动力学报,2015,30(1): 53-58. DING Guoyu,HE Xiaomin,ZHAO Ziqiang,et al. Effect of fuel-air ratio and inlet parameters on performance of triple swirler combustor[J]. Journal of Aerospace Power,2015,30(1): 53-58. (in Chinese

    DING Guoyu, HE Xiaomin, ZHAO Ziqiang, et al. Effect of fuel-air ratio and inlet parameters on performance of triple swirler combustor[J]. Journal of Aerospace Power, 2015, 30(1): 53-58. (in Chinese)
    [2]
    林宇震,许全宏,刘高恩. 燃气轮机燃烧室[M]. 北京: 国防工业出版社,2008. LIN Yuzhen,XU Quanhong,LIU Gaoen. Cas turbine combustor[M]. Beijing: National Defense Industry Press,2008. (in Chinese

    LIN Yuzhen, XU Quanhong, LIU Gaoen. Cas turbine combustor[M]. Beijing: National Defense Industry Press, 2008. (in Chinese)
    [3]
    邓明. 航空燃气涡轮发动机原理与构造[M]. 北京: 国防工业出版社,2008. DENG Ming. Principle and construction of aviation gas turbine engine[M]. Beijing: National Defense Industry Press,2008. (in Chinese

    DENG Ming. Principle and construction of aviation gas turbine engine[M]. Beijing: National Defense Industry Press, 2008. (in Chinese)
    [4]
    金如山,索建秦. 先进燃气轮机燃烧室[M]. 北京: 航空工业出版社,2016. JIN Rushan,SUO Jianqin. Advanced gas turbine combustor[M]. Beijing: Aviation Industry Press,2016. (in Chinese

    JIN Rushan, SUO Jianqin. Advanced gas turbine combustor[M]. Beijing: Aviation Industry Press, 2016. (in Chinese)
    [5]
    BAHR D W. Technology for the design of high temperature rise combustors[J]. Journal of Propulsion and Power,1987,3(2): 179-186. doi: 10.2514/3.22971
    [6]
    MCKINNEY R,CHEUNG A,SOWA W,et al. The PW TALON X low emissions combustor: revolutionary results with evolutionary technology[R]. Reno: 45th Aerospace Sciences Meeting,2007.
    [7]
    MOHAMMAD B S,JENG S M. Design procedures and a developed computer code for preliminary single annular combustor design[R]. AIAA-2009-5208,2009.
    [8]
    张宝诚. 航空发动机试验和测试技术[M]. 北京: 北京航空航天大学出版社,2005. ZHANG Baocheng. Aero-engine test and testing technology[M]. Beijing: Beijing University of Aeronautics & Astronautics Press,2005. (in Chinese

    ZHANG Baocheng. Aero-engine test and testing technology[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2005. (in Chinese)
    [9]
    MAURYA D,JAYAPRAKASH G N,BADARINATH C. Challenges in aero gas turbine combustor development[R]. ASME 2000-GT-59429,2000.
    [10]
    LEFEBVRE A H. Gas turbine combustion[M]. 2nd ed. Philadelphia: Taylor & Francis,1999.
    [11]
    金如山. 航空燃气轮机燃烧室[M]. 北京: 宇航出版社,1988.
    [12]
    KOUPPER C,GICQUEL L,DUCHAINE F,et al. Experimental and numerical calculation of turbulent timescales at the exit of an engine representative combustor simulator[J]. Journal of Engineering for Gas Turbines and Power,2016,138(2): 021503. doi: 10.1115/1.4031262
    [13]
    KOUPPER C,GICQUEL L,DUCHAINE F,et al. Advanced combustor exit plane temperature diagnostics based on large eddy simulations[J]. Flow,Turbulence and Combustion,2015,95(1): 79-96. doi: 10.1007/s10494-015-9607-3
    [14]
    KOUPPER C,CACIOLLI G,GICQUEL L,et al. Development of an engine representative combustor simulator dedicated to hot streak generation[J]. Journal of Turbomachinery,2014,136(11): 111007. doi: 10.1115/1.4028175
    [15]
    ZHANG M,WU H,WANG H. Numerical prediction of NOx emission and exit temperature pattern in a model staged lean premixed prevaporized combustor[R]. ASME Paper 2013-GT-95235,2013.
    [16]
    SHANG Mingtao,LU Shuqiang,MAO Ronghai. Numerical investigation of the effects of dilution hole geometry on the exit temperature profile and emissions of an aero-engine LPP combustor[R]. ASME Paper 2013-GT-95395,2013.
    [17]
    TAO W J,WANG J,MAO R H,et al. Generation and migration of hot streaks within an LPP combustor[R]. Phoenix: Proceedings of the ASME Turbo Expo,2019.
    [18]
    莫妲,程明,万斌,等. 三旋流燃烧室的数值模拟与试验[J]. 航空动力学报,2017,32(11): 2568-2575. MO Da,CHENG Ming,WAN Bin,et al. Numerical simulation and experiment of triple swirler combustor[J]. Journal of Aerospace Power,2017,32(11): 2568-2575. (in Chinese

    MO Da, CHENG Ming, WAN Bin, et al. Numerical simulation and experiment of triple swirler combustor[J]. Journal of Aerospace Power, 2017, 32(11): 2568-2575. (in Chinese)
    [19]
    郑顺,王成军. 掺混孔对中心分级燃烧室出口特性分析的数值模拟[J]. 科学技术与工程,2020,20(33): 13892-13896. ZHENG Shun,WANG Chengjun. Numerical simulation of influence of dilution holes on the outlet characteristics of central stage combustor[J]. Science Technology and Engineering,2020,20(33): 13892-13896. (in Chinese doi: 10.3969/j.issn.1671-1815.2020.33.054

    ZHENG Shun, WANG Chengjun. Numerical simulation of influence of dilution holes on the outlet characteristics of central stage combustor[J]. Science Technology and Engineering, 2020, 20(33): 13892-13896. (in Chinese) doi: 10.3969/j.issn.1671-1815.2020.33.054
    [20]
    AHMED M,KADY A M. Experimental investigation of aerodynamic combustion and emissions characteristics within the primary zone of a gas turbine combustor[D]. Cincinnati: University of Cincinnati,2005.
    [21]
    ELKADY A,JENG S M,MONGIA H. The influence of primary air jets on flow and pollutant emissions characteristics within a model gas turbine combustor[R]. AIAA-2006-544,2006.
    [22]
    LISCINSKY D,TRUE B,VRANOS A,et al. Experimental study of cross-stream mixing in a rectangular duct: AIAA 1992-3090 [R]. Reston,Virigina: AIAA,1992.
    [23]
    王志超,韩猛,王建臣,等. 限制域对中心分级燃烧室出口温度分布的影响[J]. 工程热物理学报,2022,43(1): 240-250. WANG Zhichao,HAN Meng,WANG Jianchen,et al. Effect of confinement on exit temperature distribution of centrally staged combustor[J]. Journal of Engineering Thermophysics,2022,43(1): 240-250. (in Chinese

    WANG Zhichao, HAN Meng, WANG Jianchen, et al. Effect of confinement on exit temperature distribution of centrally staged combustor[J]. Journal of Engineering Thermophysics, 2022, 43(1): 240-250. (in Chinese)
    [24]
    梁志鹏,林宇震,许全宏,等. 进口流场畸变对回流燃烧室出口温度分布的影响[J]. 航空动力学报,2016,31(5): 1142-1148. LIANG Zhipeng,LIN Yuzhen,XU Quanhong,et al. Effects of inlet velocity distortion on outlet temperature distribution of a reverse-flow combustor[J]. Journal of Aerospace Power,2016,31(5): 1142-1148. (in Chinese

    LIANG Zhipeng, LIN Yuzhen, XU Quanhong, et al. Effects of inlet velocity distortion on outlet temperature distribution of a reverse-flow combustor[J]. Journal of Aerospace Power, 2016, 31(5): 1142-1148. (in Chinese)
    [25]
    刘凯,王峻宁,曾文,等. 掺混孔结构对燃烧室性能影响研究[J]. 热能动力工程,2022,37(7): 64-69,92. LIU Kai,WANG Junning,ZENG Wen,et al. Research on effect of dilution holes structures on combustor performance[J]. Journal of Engineering for Thermal Energy and Power,2022,37(7): 64-69,92. (in Chinese

    LIU Kai, WANG Junning, ZENG Wen, et al. Research on effect of dilution holes structures on combustor performance[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(7): 64-69, 92. (in Chinese)
    [26]
    刘爱虢,李昱泽,杨宇东,等. 微型燃气轮机燃烧室燃烧特性实验[J]. 航空动力学报,2020,35(6): 1335-1344. LIU Aiguo,LI Yuze,YANG Yudong,et al. Experiment on combustion characteristics of micro gas turbine combustor[J]. Journal of Aerospace Power,2020,35(6): 1335-1344. (in Chinese

    LIU Aiguo, LI Yuze, YANG Yudong, et al. Experiment on combustion characteristics of micro gas turbine combustor[J]. Journal of Aerospace Power, 2020, 35(6): 1335-1344. (in Chinese)
    [27]
    刘重阳,许振宇,黄安,等. 基于波长调制技术的燃烧室出口温度分布TDLAT测试方法[J]. 航空动力学报,2023,38(1): 116-126. LIU Chongyang,XU Zhenyu,HUANG An,et al. TDLAT measurement method for outlet temperature profile of combustor based on wavelength modulation spectroscopy technology[J]. Journal of Aerospace Power,2023,38(1): 116-126. (in Chinese

    LIU Chongyang, XU Zhenyu, HUANG An, et al. TDLAT measurement method for outlet temperature profile of combustor based on wavelength modulation spectroscopy technology[J]. Journal of Aerospace Power, 2023, 38(1): 116-126. (in Chinese)
    [28]
    BACCI T,CACIOLLI G,FACCHINI B,et al. Flowfield and temperature profiles measurements on a combustor simulator dedicated to hot streaks generation[C]//Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition,2015.
    [29]
    LIU Cunxi,LIU Fuqiang,YANG Jinhu,et al. Investigations of the effects of spray characteristics on the flame pattern and combustion stability of a swirl-cup combustor[J]. Fuel,2015,139: 529-536. doi: 10.1016/j.fuel.2014.08.072
    [30]
    蔡文哲,代威,薛鑫,等. 掺混孔结构对大曲率受限空间出口温度分布的影响[J]. 推进技术,2022,43(3): 216-223. CAI Wenzhe,DAI Wei,XUE Xin,et al. Effects of dilution hole structure on exit temperature distribution characteristic in large curvature limited space[J]. Journal of Propulsion Technology,2022,43(3): 216-223. (in Chinese

    CAI Wenzhe, DAI Wei, XUE Xin, et al. Effects of dilution hole structure on exit temperature distribution characteristic in large curvature limited space[J]. Journal of Propulsion Technology, 2022, 43(3): 216-223. (in Chinese)
    [31]
    陈忠良,贾立超,何悟. 壁面效应对燃烧室多头部试验出口温度场均匀性影响分析[R]. 南京: 第五届空天动力联合会,2020.
    [32]
    邹运,万斌,胡迎明,等. 测温方法对高温升燃烧室温度场试验结果影响分析[J]. 航空发动机,2020,46(5): 92-96. ZOU Yun,WAN Bin,HU Yingming,et al. Influence of temperature measurement method on temperature field test results of high temperature rise combustor[J]. Aeroengine,2020,46(5): 92-96. (in Chinese

    ZOU Yun, WAN Bin, HU Yingming, et al. Influence of temperature measurement method on temperature field test results of high temperature rise combustor[J]. Aeroengine, 2020, 46(5): 92-96. (in Chinese)
    [33]
    杨思恒,王建臣,张弛,等. 三头部中心分级燃烧室出口温度分布研究[J]. 工程热物理学报,2021,42(10): 2737-2748. YANG Siheng,WANG Jianchen,ZHANG Chi,et al. Investigation on outlet temperature distribution of a three-sector centrally staged combustor[J]. Journal of Engineering Thermophysics,2021,42(10): 2737-2748. (in Chinese

    YANG Siheng, WANG Jianchen, ZHANG Chi, et al. Investigation on outlet temperature distribution of a three-sector centrally staged combustor[J]. Journal of Engineering Thermophysics, 2021, 42(10): 2737-2748. (in Chinese)
    [34]
    何悟. 环形燃烧室出口温度场优化方法研究[R]. 成都: 第六届空天动力联合会,2022.
    [35]
    赵明龙,杨志民,林宇震,等. 单头部/扇形/全环燃烧室贫油点火性能换算[J]. 航空动力学报,2017,32(8): 1822-1826. ZHAO Minglong,YANG Zhimin,LIN Yuzhen,et al. Conversion methods for lean ignition performances among single-sector,multi-sector and full annular combustors[J]. Journal of Aerospace Power,2017,32(8): 1822-1826. (in Chinese

    ZHAO Minglong, YANG Zhimin, LIN Yuzhen, et al. Conversion methods for lean ignition performances among single-sector, multi-sector and full annular combustors[J]. Journal of Aerospace Power, 2017, 32(8): 1822-1826. (in Chinese)
    [36]
    陈光. 航空发动机结构设计分析[M]. 北京: 北京航空航天大学出版社,2006. CHEN Guang. Structural design analysis of aero-engine[M]. Beijing: Beijing University of Aeronautics & Astronautics Press,2006. (in Chinese

    CHEN Guang. Structural design analysis of aero-engine[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2006. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (14) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return