Volume 39 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
WANG Xiaochen, JIA Linyuan, CHEN Yuchun, et al. Design parameter analysis of gas/turbo-electric driven distributed propulsion system[J]. Journal of Aerospace Power, 2024, 39(4):20230460 doi: 10.13224/j.cnki.jasp.20230460
Citation: WANG Xiaochen, JIA Linyuan, CHEN Yuchun, et al. Design parameter analysis of gas/turbo-electric driven distributed propulsion system[J]. Journal of Aerospace Power, 2024, 39(4):20230460 doi: 10.13224/j.cnki.jasp.20230460

Design parameter analysis of gas/turbo-electric driven distributed propulsion system

doi: 10.13224/j.cnki.jasp.20230460
  • Received Date: 2023-07-17
    Available Online: 2023-12-22
  • Considering the shortcomings in the design and installation of the reheat gas-driven distributed propulsion system, a partial turbine-electric distributed propulsion system was proposed by combining with the turbine-electric driven method. A design point calculation model was established based on the component model. The energy flow mechanism of the propulsion system was analyzed, and the design method of key energy transfer parameters was proposed. Based on the research, the influence of design parameters on the propulsion system was analyzed, and the performance and design parameters of different distributed propulsion systems were compared and analyzed. The results showed that the fuel consumption of the partial turbo-electric distributed propulsion system was more sensitive to the turbine inlet temperature, and the total pressure ratio had less influence. Compared with the gas-driven distributed propulsion system, the partial turbo-electric distributed propulsion system had a fuel consumption advantage of 1.7%, and when the power ratio was reasonably selected, it could improve the gas-driven distributed propulsion system. Focusing on the fuel consumption of the propulsion system, the performance suitability of the partial turbo-electric distributed propulsion system based on the gas-driven propulsion system was demonstrated.

     

  • loading
  • [1]
    GOHARDANI A S,DOULGERIS G,SINGH R. Challenges of future aircraft propulsion: a review of distributed propulsion technology and its potential application for the all electric commercial aircraft[J]. Progress in Aerospace Sciences,2011,47(5): 369-391. doi: 10.1016/j.paerosci.2010.09.001
    [2]
    FELDER J,KIM H,BROWN G,et al. An examination of the effect of boundary layer ingestion on turboelectric distributed propulsion systems[R]. AIAA 2011-300,2011.
    [3]
    徐德,许晓平,夏济宇,等. 分布式电推进系统气动-推进耦合特性[J/OL]. 航空动力学报, (2023-06-25)[2023-11-13]. https://doi.org/10.13224/j.cnki.jasp.20220681. XU De,XU Xiaoping,XIA Jining,et al. Aerodynamic-propulsion coupling characteristics of distributed electric propulsion system[J/OL]. Journal of Aerospace Power, (2023-06-25)[2023-11-13]. https://doi.org/10.13224/j.cnki.jasp.20220681. (in Chinese

    XU De, XU Xiaoping, XIA Jining, et al. Aerodynamic-propulsion coupling characteristics of distributed electric propulsion system[J/OL]. Journal of Aerospace Power, (2023-06-25)[2023-11-13]. https://doi.org/10.13224/j.cnki.jasp.20220681. (in Chinese)
    [4]
    李嘉诚,盛汉霖,陈欣,等. 混合动力分布式电推进飞行器总体设计[J/OL]. 航空动力学报, (2022-12-20)[2023-06-25]. https://doi.org/10.13224/j.cnki.jasp.20220693. LI Jiacheng,SHENG Hanlin,CHEN Xin,et al. System design of hybrid distributed electric propulsion aircraft[J/OL]. Journal of Aerospace Power, (2022-12-20)[2023-06-25]. https://doi.org/10.13224/j.cnki.jasp.20220693. (in Chinese

    LI Jiacheng, SHENG Hanlin, CHEN Xin, et al. System design of hybrid distributed electric propulsion aircraft[J/OL]. Journal of Aerospace Power, (2022-12-20)[2023-06-25]. https://doi.org/10.13224/j.cnki.jasp.20220693. (in Chinese)
    [5]
    FELDER J,BROWN G V,DAEKIM H,et al. Turboelectric distributed propulsion in a hybrid wing body aircraft[C]//20th International Society for Airbreathing Engines. Gothenburg,Sweden: ISABE,2011: 1340-1360.
    [6]
    WICK A T,HOOKER J R,ZEUNE C H. Integrated aerodynamic benefits of distributed propulsion[R]. AIAA 2015-1500,2015.
    [7]
    FELDER J,KIM H,BROWN G. Turboelectric distributed propulsion engine cycle analysis for hybrid-wing-body aircraft[R]. AIAA-2009-1132,2009.
    [8]
    GIBSON A,HALL D,WATERS M,et al. Superconducting electric distributed propulsion structural integration and design in a split-wing regional airliner[R]. AIAA 2011-223,2011.
    [9]
    GREEN M,SCHILTGEN B,GIBSON A. Analysis of a distributed hybrid propulsion system with conventional electric machines[R]. AIAA 2012-3768,2012.
    [10]
    SCHILTGEN B,GREEN M,GIBSON A,et al. Benefits and concerns of hybrid electric distributed propulsion with conventional electric machines[R]. AIAA-2012-3769,2012.
    [11]
    SCHMOLLGRUBER P,ATINAULT O,CAFARELLI I,et al. Multidisciplinary exploration of DRAGON: an ONERA hybrid electric distributed propulsion concept[R]. AIAA 2019-1585,2019.
    [12]
    SCHMOLLGRUBER P,DONJAT D,RIDEL M,et al. Multidisciplinary design and performance of the ONERA hybrid electric distributed propulsion concept (DRAGON) [R]. AIAA 2020-0501,2020.
    [13]
    RIDEL M,VAN E N,PROSVIRNOVA T,et al. DRAGON: hybrid electrical architecture for distributed fans propulsion[EB/OL]. [2023-12-14]. https://hal.science/hal-03420612/.
    [14]
    SCHILTGEN B T,FREEMAN J. ECO-150-300 design and performance: a tube-and-wing distributed electric propulsion airliner[R]. AIAA 2019-1808,2019.
    [15]
    JANSEN R,BROWN G V,FELDER J L,et al. Turboelectric aircraft drive key performance parameters and functional requirements[R]. AIAA 2015-3890,2015.
    [16]
    李开省. 电动飞机核心技术研究综述[J]. 航空科学技术,2019,30(11): 8-17. LI Kaisheng. Summary of research on core technology of electric aircraft[J]. Aeronautical Science & Technology,2019,30(11): 8-17. (in Chinese doi: 10.19452/j.issn1007-5453.2019.11.002

    LI Kaisheng. Summary of research on core technology of electric aircraft[J]. Aeronautical Science & Technology, 2019, 30(11): 8-17. (in Chinese) doi: 10.19452/j.issn1007-5453.2019.11.002
    [17]
    陈玉洁. 电气化推进系统研制新进展[J]. 航空动力,2020(5): 36-40. CHEN Yujie. Progress of the electrified propulsion[J]. Aerospace Power,2020(5): 36-40. (in Chinese

    CHEN Yujie. Progress of the electrified propulsion[J]. Aerospace Power, 2020(5): 36-40. (in Chinese)
    [18]
    姚轩宇,蒋承志,满运堃. 航空混合电推进试验设备发展[J]. 航空动力,2019(5): 65-67. YAO YAO Xuanyu,JIANG Chengzhi,MAN Yunkun. The development of aviation hybrid electric propulsion system test equipments[J]. Aerospace Power,2019(5): 65-67. (in Chinese

    YAO YAO Xuanyu, JIANG Chengzhi, MAN Yunkun. The development of aviation hybrid electric propulsion system test equipments[J]. Aerospace Power, 2019(5): 65-67. (in Chinese)
    [19]
    王翔宇. 电动飞行与推进系统变革[J]. 航空动力,2019(3): 43-47. WANG Xiangyu. Electric flight and the technological change of propulsion system[J]. Aerospace Power,2019(3): 43-47. (in Chinese

    WANG Xiangyu. Electric flight and the technological change of propulsion system[J]. Aerospace Power, 2019(3): 43-47. (in Chinese)
    [20]
    陈玉春,贾琳渊,康瑞元,等. 分布式推进系统: CN206528653U[P]. 2017-09-29.
    [21]
    FENNY C A,OLSON R L. Distributed propulsion system: US10556680[P]. 2020-02-11.
    [22]
    王笑晨,陈玉春,贾琳渊,等. 回热式工质驱动分布式推进系统参数研究[J]. 推进技术,2022,43(9): 60-68. WANG Xiaochen,CHEN Yuchun,JIA Linyuan,et al. Component parameters of recuperated gas-driven distributed propulsion system[J]. Journal of Propulsion Technology,2022,43(9): 60-68. (in Chinese

    WANG Xiaochen, CHEN Yuchun, JIA Linyuan, et al. Component parameters of recuperated gas-driven distributed propulsion system[J]. Journal of Propulsion Technology, 2022, 43(9): 60-68. (in Chinese)
    [23]
    龚昊,王占学,刘增文. 间冷回热循环航空发动机参数匹配研究[J]. 航空动力学报,2012,27(8): 1809-1814. GONG Hao,WANG Zhanxue,LIU Zengwen. Study on thermodynamic cycle parameter matching for intercooled recuperated aero-engine[J]. Journal of Aerospace Power,2012,27(8): 1809-1814. (in Chinese doi: 10.13224/j.cnki.jasp.2012.08.019

    GONG Hao, WANG Zhanxue, LIU Zengwen. Study on thermodynamic cycle parameter matching for intercooled recuperated aero-engine[J]. Journal of Aerospace Power, 2012, 27(8): 1809-1814. (in Chinese) doi: 10.13224/j.cnki.jasp.2012.08.019
    [24]
    陈玉春,贾琳渊,李维. 航空燃气涡轮发动机原理[M]. 北京: 科学出版社,2022.
    [25]
    杨世铭,陶文铨. 传热学[M]. 北京: 高等教育出版社,2006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (94) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return