Volume 39 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
TANG Runze, LI Haiwang, ZHOU Zhiyu, et al. Influence of coolant inlet angle on endwall leakage flow film cooling performance[J]. Journal of Aerospace Power, 2024, 39(X):20230762 doi: 10.13224/j.cnki.jasp.20230762
Citation: TANG Runze, LI Haiwang, ZHOU Zhiyu, et al. Influence of coolant inlet angle on endwall leakage flow film cooling performance[J]. Journal of Aerospace Power, 2024, 39(X):20230762 doi: 10.13224/j.cnki.jasp.20230762

Influence of coolant inlet angle on endwall leakage flow film cooling performance

doi: 10.13224/j.cnki.jasp.20230762
  • Received Date: 2023-12-04
    Available Online: 2024-03-28
  • By using an integrated model with disc cavity and turbine blade, the endwall film cooling effectiveness was investigated numerically by using the shear stress transfer (SST) model to solve the Reynolds-averaged Naiver-Stokes (RANS) equation. The rotational Reynolds number at the outlet of the disc cavity was 1.5×105. Carbon dioxide was chosen as the coolant to maintain the coolant-to-mainstream density ratio. The diffusion process of coolant was characterized by solving the turbulent transport equation. The effect of coolant inlet angle (−45°, 0°, +45°) on the endwall film cooling effectiveness was investigated. It was found that the inlet angle of coolant had a significant impact on the endwall film cooling effectiveness, and the −45° inlet angle can significantly improve the endwall film cooling effectiveness at various coolant-to-mainstream mass flow rates.

     

  • loading
  • [1]
    UMESH U,VIGOR Y. A review of cooling technologies for high temperature rotating components in gas turbine[J]. Propulsion and Power Research,2022,11(3): 293-310. doi: 10.1016/j.jppr.2022.07.001
    [2]
    SHARMA O P,BUTLER T L. Predictions of endwall losses and secondary flows in axial flow turbine cascades[J]. Journal of Turbomachinery,1987,109(2): 229-236. doi: 10.1115/1.3262089
    [3]
    HAWTHORNE W R. Secondary circulation in fluid flow[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences,1951,206(1086): 374-387.
    [4]
    GOLDSTEIN R J,SPORES R A. Turbulent transport on the endwall in the region between adjacent turbine blades[J]. Journal of Heat Transfer,1988,110(4a): 862-869. doi: 10.1115/1.3250586
    [5]
    NICKLAS M. Film-cooled turbine endwall in a transonic flow field: Part Ⅱ heat transfer and film-cooling effectiveness[J]. Journal of Turbomachinery,2001,123(4): 720-729. doi: 10.1115/1.1397308
    [6]
    李宁坤,闻洁. 跨声速涡轮静子端壁气膜冷却数值研究[J]. 航空发动机,2011,37(3): 50-54. LI Ningkun,WEN Jie. Numerical study on flim cooling of transonicturbine vane endwall[J]. Aeroengine,2011,37(3): 50-54. (in Chinese doi: 10.3969/j.issn.1672-3147.2011.03.015

    LI Ningkun, WEN Jie. Numerical study on flim cooling of transonicturbine vane endwall[J]. Aeroengine, 2011, 37(3): 50-54. (in Chinese) doi: 10.3969/j.issn.1672-3147.2011.03.015
    [7]
    BLAIR M F. An experimental study of heat transfer and film cooling on large-scale turbine endwalls[J]. Journal of Heat Transfer,1974,96(4): 524-529. doi: 10.1115/1.3450239
    [8]
    刘高文,刘松龄,朱惠人,等. 涡轮叶栅前缘上游端壁气膜冷却的传热实验研究[J]. 航空动力学报,2001,16(3): 249-255. LIU Gaowen,LIU Songling,ZHU Huiren,et al. Endwall heat transfer and film cooling measurements in a turbine cascade with injection upstream of leading edge[J]. Journal of Aerospace Power,2001,16(3): 249-255. (in Chinese doi: 10.3969/j.issn.1000-8055.2001.03.010

    LIU Gaowen, LIU Songling, ZHU Huiren, et al. Endwall heat transfer and film cooling measurements in a turbine cascade with injection upstream of leading edge[J]. Journal of Aerospace Power, 2001, 16(3): 249-255. (in Chinese) doi: 10.3969/j.issn.1000-8055.2001.03.010
    [9]
    刘高文,刘松龄,许都纯,等. 涡轮叶栅前缘上游端壁气膜冷却的流场实验研究[J]. 航空动力学报,2001,16(2): 135-141. LIU Gaowen,LIU Songling,XU Duchun,et al. Experimental investigation of flow fields in a turbine cascade with endwall film-cooling upstream of leading edge[J]. Journal of Aerospace Power,2001,16(2): 135-141. (in Chinese doi: 10.3969/j.issn.1000-8055.2001.02.009

    LIU Gaowen, LIU Songling, XU Duchun, et al. Experimental investigation of flow fields in a turbine cascade with endwall film-cooling upstream of leading edge[J]. Journal of Aerospace Power, 2001, 16(2): 135-141. (in Chinese) doi: 10.3969/j.issn.1000-8055.2001.02.009
    [10]
    PAPA M,SRINIVASAN V,GOLDSTEIN R J. Film cooling effect of rotor-stator purge flow on endwall heat/mass transfer[J]. Journal of Turbomachinery,2012,134(4): 041014.
    [11]
    LI Xueying,REN Jing,JIANG Hongde. Influence of different film cooling arrangements on endwall cooling[J]. International Journal of Heat and Mass Transfer,2016,102: 348-359. doi: 10.1016/j.ijheatmasstransfer.2016.06.047
    [12]
    姚韵嘉,祝培源,陈云,等. 间隙位置对叶片端壁气膜冷却性能影响的实验研究[J]. 工程热物理学报,2019,40(10): 2327-2333. YAO Yunjia,ZHU Peiyuan,CHEN Yun,et al. Experimental study on the effect of the locations of slot jet on film cooling performance of endwall[J]. Journal of Engineering Thermophysics,2019,40(10): 2327-2333. (in Chinese

    YAO Yunjia, ZHU Peiyuan, CHEN Yun, et al. Experimental study on the effect of the locations of slot jet on film cooling performance of endwall[J]. Journal of Engineering Thermophysics, 2019, 40(10): 2327-2333. (in Chinese)
    [13]
    ZHU Peiyuan,SONG Liming,LI Jun,et al. Effects of upstream slot geometry on the endwall aerothermal performance of a gas turbine blade under different ejection angle conditions[J]. International Journal of Heat and Mass Transfer,2017,115: 652-669. doi: 10.1016/j.ijheatmasstransfer.2017.08.072
    [14]
    杜昆,李军,晏鑫. 槽缝射流对静叶端壁冷却性能的影响[J]. 西安交通大学学报,2015,49(1): 21-26. DU Kun,LI Jun,YAN Xin. Effect of the slot jet impingement on the cooling performance of the vane endwall[J]. Journal of Xi’an Jiaotong University,2015,49(1): 21-26. (in Chinese

    DU Kun, LI Jun, YAN Xin. Effect of the slot jet impingement on the cooling performance of the vane endwall[J]. Journal of Xi’an Jiaotong University, 2015, 49(1): 21-26. (in Chinese)
    [15]
    高庆,屈杰,王汀,等. 轮缘间隙出流对下游动叶端壁气膜冷却特性的影响[J]. 动力工程学报,41(5): 374-379. GAO Qing,QU Jie,WANG Ting,et al. Effects of rim seal purge flow on film cooling characteristics of downstream rotor endwall[J]. Journal of Chinese Society of Power Engineering,41(5): 374-379. (in Chinese

    GAO Qing, QU Jie, WANG Ting, et al. Effects of rim seal purge flow on film cooling characteristics of downstream rotor endwall[J]. Journal of Chinese Society of Power Engineering, 41(5): 374-379. (in Chinese)
    [16]
    张垲垣,杜昆,宋立明,等. 预旋槽缝流及间隙射流对端壁冷却性能的影响[J]. 工程热物理学报,2019,40(6): 1250-1255. ZHANG Kaiyuan,DU Kun,SONG Liming,et al. Effect of swirled purge flow and slashface leakage flow on endwall cooling performance[J]. Journal of Engineering Thermophysics,2019,40(6): 1250-1255. (in Chinese

    ZHANG Kaiyuan, DU Kun, SONG Liming, et al. Effect of swirled purge flow and slashface leakage flow on endwall cooling performance[J]. Journal of Engineering Thermophysics, 2019, 40(6): 1250-1255. (in Chinese)
    [17]
    REZASOLTANI M,SCHOBEIRI M T,HAN J C. Experimental investigation of the effect of purge flow on film cooling effectiveness on a rotating turbine with nonaxisymmetric end wall contouring[J]. Journal of Turbomachinery,2014,136(9): 091009. doi: 10.1115/1.4027196
    [18]
    SURYANARAYANAN A,OZTURK B,SCHOBEIRI M T,et al. Film-cooling effectiveness on a rotating turbine platform using pressure sensitive paint technique[J]. Journal of Turbomachinery,2010,132(4): 1-13.
    [19]
    GAO Feng,CHEW J,CHANA K S,et al. Unsteady flow phenomena in turbine rim seals[J]. Journal of Engineering for Gas Turbines and Power,2016,139(3): 032501.
    [20]
    SANGAN C M,POUNTNEY O J,SCOBIE J A,et al. Experimental measurements of ingestion through turbine rim seals: Part Ⅲ single and double seals[J]. Journal of Turbomachinery,2013,135(5): 051011. doi: 10.1115/1.4007504
    [21]
    POPOVÍC I,HODSON H P. Improving turbine stage efficiency and sealing effectiveness through modifications of the rim seal geometry[J]. Journal of Turbomachinery,2013,135(6): 061016. doi: 10.1115/1.4024872
    [22]
    DA SOGHE R,BIANCHINI C,SANGAN C M,et al. Numerical characterization of hot-gas ingestion through turbine rim seals[J]. Journal of Engineering for Gas Turbines and Power,2017,139(3): 032602. doi: 10.1115/1.4034540
    [23]
    ZHANG Feng,WANG Xinjun,LI Jun,et al. Numerical investigation on the effect of radial location of sealing air inlet and its geometry on the sealing performance of a stator-well cavity[J]. International Journal of Heat and Mass Transfer,2017,115: 820-832. doi: 10.1016/j.ijheatmasstransfer.2017.08.053
    [24]
    陶加银,高庆,宋立明,等. 基于附加示踪变量法的涡轮轮缘密封非定常封严特性研究[J]. 工程热物理学报,2014,35(11): 2154-2158. TAO Jiayin,GAO Qing,SONG Liming,et al. Numerical investigations on the unsteady mainstream ingestion characteristics of turbine rim seals with additional passive tracer method[J]. Journal of Engineering Thermophysics,2014,35(11): 2154-2158. (in Chinese

    TAO Jiayin, GAO Qing, SONG Liming, et al. Numerical investigations on the unsteady mainstream ingestion characteristics of turbine rim seals with additional passive tracer method[J]. Journal of Engineering Thermophysics, 2014, 35(11): 2154-2158. (in Chinese)
    [25]
    XIE Gang,TAO Zhi,ZHOU Zhiyu,et al. Hole arrangement effect to film cooling performance on leading edge region of rotating blade[J]. International Journal of Thermal Sciences,2021,169: 107034. doi: 10.1016/j.ijthermalsci.2021.107034
    [26]
    LIU T,SULLIVAN J P. Pressure and temperature sensitive paints[M]. Berlin,Germany: Springer,2005.
    [27]
    NATSUI G,LITTLE Z,KAPAT J S,et al. A detailed uncertainty analysis of adiabatic film cooling effectiveness measurements using pressure-sensitive paint[J]. Journal of Turbomachinery,2016,138(8): 081007. doi: 10.1115/1.4032674
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (15) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return