Volume 38 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
KANG Zhong, LI Guoqing, ZHANG Shen, et al. Film cooling characteristics and loss mechanism of contracted double-jet hole[J]. Journal of Aerospace Power, 2023, 38(2):335-343 doi: 10.13224/j.cnki.jasp.20210202
Citation: KANG Zhong, LI Guoqing, ZHANG Shen, et al. Film cooling characteristics and loss mechanism of contracted double-jet hole[J]. Journal of Aerospace Power, 2023, 38(2):335-343 doi: 10.13224/j.cnki.jasp.20210202

Film cooling characteristics and loss mechanism of contracted double-jet hole

doi: 10.13224/j.cnki.jasp.20210202
  • Received Date: 2021-04-28
    Available Online: 2022-12-21
  • Film cooling characteristics and loss mechanism of double-jet hole and contracted double-jet hole with blowing ratio varying from 0.5 to 2.0 were numerically simulated. Results showed that the lateral film coverage developed and the film cooling effectiveness was promoted for the Contracted Double-jet hole when the blowing ratio was bigger than 1.0. When the blowing ratio reached 2.0, the Contracted Double-jet hole can prevent the film lift-off. Compared with the Double-jet hole, the cooling flow at the inlet of the Contracted Double-jet hole was accelerated evenly and the blockage caused by the low velocity zone in the hole was eliminated so that the flow field became uniform and the total pressure loss was reduced.

     

  • loading
  • [1]
    GOLDSTEIN R J,ECKERT E,BURGGRAF F. Effects of hole geometry and density on three-dimensional film cooling[J]. International Journal of Heat & Mass Transfer,2015,17(5): 595-607.
    [2]
    SCHMIDT D L,SEN B,BOGARD D G. Film cooling with compound angle holes: adiabatic effectiveness[J]. Journal of Turbomachinery,1996,118(4): 807-813. doi: 10.1115/1.2840938
    [3]
    GRITSCH M,SCHULZ A,WITTIG S. Adiabatic wall effectiveness measurements of film-cooling holes with expanded exits[J]. Journal of Turbomachinery,1998,120(3): 549-556. doi: 10.1115/1.2841752
    [4]
    FRIC T F,ROSHKO A. Vortical structure in the wake of a transverse jet[J]. Journal of Fluid Mechanics,1994,279: 1-47. doi: 10.1017/S0022112094003800
    [5]
    KUSTERER K, BOHN D, SUGIMOTO T, et al. Influence of blowing ratio on the double-jet ejection of cooling air[R]. ASME Paper GT2007-27301, 2007.
    [6]
    李润东,李明春,贺业光,等. 射流角度对姊妹孔气膜冷却效果影响实验研究[J]. 推进技术,2020,41(8): 1765-1772. doi: 10.13675/j.cnki.tjjs.190448

    LI Rundong,LI Mingchun,HE Yeguang,et al. Experimental study on effects of injection angles on film cooling performance of sister holes[J]. Journal of Propulsion Technology,2020,41(8): 1765-1772. (in Chinese) doi: 10.13675/j.cnki.tjjs.190448
    [7]
    刘聪,朱惠人,付仲议,等. 涡轮导叶吸力面簸箕型孔气膜冷却特性实验研究[J]. 推进技术,2016,37(6): 1142-1150. doi: 10.13675/j.cnki.tjjs.2016.06.019

    LIU Cong,ZHU Huiren,FU Zhongyi,et al. Experimental study of film cooling characteristics for dust-pan shaped holes on suction side in turbine guide vane[J]. Journal of Propulsion Technology,2016,37(6): 1142-1150. (in Chinese) doi: 10.13675/j.cnki.tjjs.2016.06.019
    [8]
    XU Qingzong,DU Qiang,WANG Pei,et al. Computational study of film cooling and flowfields on a stepped vane endwall with a row of cylindrical hole and interrupted slot injections[J]. International Journal of Heat and Mass Transfer,2019,134: 796-806. doi: 10.1016/j.ijheatmasstransfer.2019.01.093
    [9]
    张盛昌,张靖周,谭晓茗. 利用上游沙丘形斜坡增强气膜冷却[J]. 航空动力学报,2020,35(5): 973-982. doi: 10.13224/j.cnki.jasp.2020.05.009

    ZHANG Shengchang,ZHANG Jingzhou,TAN Xiaoming. Film cooling enhancement by using upstream sand-dune-shaped ramp[J]. Journal of Aerospace Power,2020,35(5): 973-982. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.05.009
    [10]
    KUSTERER K, ELYAS A, BOHN D, et al. Film cooling effectiveness comparison between shaped- and double jet film cooling holes in a row arrangement[R]. ASME Paper GT2010-22604, 2010
    [11]
    YAO Jiaxu, XU Jin, ZHANG Ke, et al. Interaction of flow and film-cooling effectiveness between double-jet film-cooling holes with various spanwise distances[R]. ASME Paper GT2017-63740, 2017.
    [12]
    YAO Jiaxu, LEI Jiang, WU Junmei, et al. Effects of streamwise distance and density ratio on film-cooling effectiveness for double-jet film-cooling on a flat plate[R]. ASME Paper GT2018-75456, 2018.
    [13]
    KUSTERER K, ELYAS A, BOHN D, et al. Double-Jet film-cooling for highly efficient film-cooling with low blowing ratios[R]. ASME Paper GT2008-50073, 2008.
    [14]
    王文三,唐菲,赵庆军,等. 新型双射流冷却孔对气膜冷却效率影响的研究[J]. 工程热物理学报,2011,32(8): 1291-1294.

    WANG Wensan,TANG Fei,ZHAO Qingjun,et al. An investigation of the effect of new-type double-jet film cooling (DJFC) hole on film cooling effectiveness[J]. Journal of Engineering Thermophysics,2011,32(8): 1291-1294. (in Chinese)
    [15]
    HARTSEL J. Prediction of effects of mass-transfer cooling on the blade-row efficiency of turbine airfoils[R]. San Diego: In Proceedings of the 10th Aerospace Sciences Meeting, 1972.
    [16]
    ITO S,ECKERT E R G,GOLDSTEIN R J. Aerodynamic loss in a gas turbine stage with film cooling[J]. Journal of Engineering for Power,1980,102(4): 964-970. doi: 10.1115/1.3230368
    [17]
    DAY C, OLDFIELD M, LOCK G D, et al. Efficiency measurements of an annular nozzle guide vane cascade with different film cooling geometries[R]. ASME Paper 98-GT-538, 1998.
    [18]
    YOUNG J B,HORLOCK J H. Defining the efficiency of a cooled turbine[J]. Journal of Turbomachinery,2006,128(4): 658-667. doi: 10.1115/1.2218890
    [19]
    YOUNG J B,WILCOCK R C. Modeling the air-cooled gas turbine: Part 1 general thermodynamics[J]. Journal of Turbomachinery,2002,124(2): 207-213. doi: 10.1115/1.1415037
    [20]
    YOUNG J B,WILCOCK R C. Modeling the air-cooled gas turbine: Part 2 coolant flows and losses[J]. Journal of Turbomachinery,2002,124(2): 214-221. doi: 10.1115/1.1415038
    [21]
    LIM C H, PULLAN G, IRELAND P. Influence of film cooling hole angles and geometries on aerodynamic loss and net heat flux reduction[R]. ASME Paper GT2011-45721, 2011.
    [22]
    LIM C H, PULLAN G, NORTHALL J. Estimating the loss associated with film cooling for a turbine stage[R]. ASME Paper GT2010-22327, 2010.
    [23]
    DENTON J D. Loss mechanisms in turbomachines[J]. Trans Asme Journal of Turbomachinery,1993,115(4): 621-656. doi: 10.1115/1.2929299
    [24]
    高扬,刘建军,安柏涛. 主流马赫数对不同气膜孔结构冷却效果及气动损失影响研究[J]. 燃气轮机技术,2015,28(2): 15-20. doi: 10.3969/j.issn.1009-2889.2015.02.003

    GAO Yang,LIU Jianjun,AN Baitao. Influence of mainstream Mach number on cooling effectiveness and aerodynamic losses of different film cooling configurations[J]. Gas Turbine Technology,2015,28(2): 15-20. (in Chinese) doi: 10.3969/j.issn.1009-2889.2015.02.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (314) PDF downloads(121) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return