Volume 38 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
ZHAO Hongliu, SUN Mingrui, JIANG Nan, et al. Design and experimental study of S-type foam metal tube-fin heat exchanger[J]. Journal of Aerospace Power, 2023, 38(4):840-849 doi: 10.13224/j.cnki.jasp.20210219
Citation: ZHAO Hongliu, SUN Mingrui, JIANG Nan, et al. Design and experimental study of S-type foam metal tube-fin heat exchanger[J]. Journal of Aerospace Power, 2023, 38(4):840-849 doi: 10.13224/j.cnki.jasp.20210219

Design and experimental study of S-type foam metal tube-fin heat exchanger

doi: 10.13224/j.cnki.jasp.20210219
  • Received Date: 2021-05-08
    Available Online: 2023-02-28
  • In order to solve the problem of thermal protection and thermal management of aero-engine components, for CCA (cooled cooling air) technology, high-porosity foam metal was used to replace the metal fins of traditional tube-fin heat exchangers, and a lightweight, efficient, and small size S-type foam metal tube-fin heat exchanger was designed. The heat exchanger core made of 3D printed titanium alloy, with weight of 129 g, was composed of S-shaped tube bundles and foamed metal fins. The fins were installed at the straight pipe section of the tube bundle. The flow heat transfer experiment simulated the air-oil heat exchanger outside the casing of an aero engine, with water on the cold side and high temperature air on the hot side. The flow rate, inlet and outlet temperature and pressure of the fluid on both sides were measured. The results showed that: for the fin of the heat exchanger, the heat transfer coefficient increased by 43.94%, the heat transfer increased by 21.7%, the comprehensive heat transfer performance increased by 25.43%, and the power-to-weight ratio increased by 17.26% on average, reaching 14.61 kW/kg. This showed that the metal foam can improve the overall performance of the heat exchanger and can be used in the design of heat exchangers with similar structures for future aero-engines.

     

  • loading
  • [1]
    史美中, 王中铮. 热交换器原理与设计 [M]. 南京: 东南大学出版社, 2014.
    [2]
    SAIDI A, SUNDÉN B, ERIKSSON D. Intercoolers in gas turbine systems and combi-processes for production of electricity[C]//Proceedings of the Asme Turbo Expo: Power for Land, Sea, & Air. Munich: ASME Turbo Expo, 2000, 11-15.
    [3]
    YOSHIDA T. Cooling systems for ultra-high temperature turbines[J]. Heat Transfer in Gas Turbin Systems,2010,934: 194-205.
    [4]
    PAPDOPOULOS T, PILIDIS P. Introduction of intercooling in a high bypass jet engine[C]// Proceedings of the ASME Turbo Expo: Power for Land, Sea, & Air. Munich: ASME Turbo Expo, 2000: 115-117.
    [5]
    于霄,吕多,李洪莲,等. 空气冷却器在航空发动机上的应用及流动传热试验分析技术研究[J]. 计测技术,2017,37(3): 34-38.

    YU Xiao,LÜ Duo,LI Honglian,et al. Application of air cooler in aero-engine and research on flow and heat transfer test analysis technology[J]. Measurement Technology,2017,37(3): 34-38. (in Chinese)
    [6]
    MIN J K,JI H J,MAN Y H,et al. High temperature heat exchanger studies for applications to gas turbines[J]. International Journal of Heat and Mass Transfer,2009,46(2): 175-186. doi: 10.1007/s00231-009-0560-3
    [7]
    张涛,孙冰. 某探测器上火箭发动机热防护仿真与设计[J]. 航空动力学报,2010,25(6): 1407-1411.

    ZHANG Tao,SUN Bing. Simulation and design of thermal protection for a rocket engine on a probe[J]. Journal of Aerospace Power,2010,25(6): 1407-1411. (in Chinese)
    [8]
    于喜奎. 高超声速飞机热管理系统控制模型构建与仿真[J]. 航空动力学报,2018,33(3): 741-751.

    YU Xikui. Construction and simulation of control model for thermal management system of hypersonic aircraft[J]. Journal of Aerospace Power,2018,33(3): 741-751. (in Chinese)
    [9]
    BHATTACHARYA A,CALMIDI V V,MAHAJAN R L,et al. Thermophysical properties of high porosity metal foams[J]. International Journal of Heat and Mass Transfer,2002,45(5): 1017-1031. doi: 10.1016/S0017-9310(01)00220-4
    [10]
    SUN Mingrui, HU Chengzhi, ZHANG Lunxiang, et al. Pore-scale simulation of forced convection heat transfer under turbulent conditions in open-cell metal foam [J]. Chemical Engineering Journal, 2020, 389: 124427.1-124427.11.
    [11]
    SUN M, LI M, HU C, et al. Comparison of forced convective heat transfer between pillar and real foam structure under high Reynolds number[J]. Applied Thermal Engineering, 2021, 182: 116-130.
    [12]
    SUN Mingrui,YANG Lei,HU Chengzhi,et al. Simulation of forced convective heat transfer in Kelvin cells with optimized skeletons[J]. International Journal of Heat and Mass Transfer,2021,165: 120637.1-120637.11.
    [13]
    ZHAO Jiafei,SUN Mingrui,ZHANG Lunxiang,et al. Forced convection heat transfer in porous structure: effect of morphology on pressure drop and heat transfer coefficient[J]. Journal of Thermal Science,2021,30: 363-393. doi: 10.1007/s11630-021-1403-x
    [14]
    HU Chengzhi,SUN Mingrui,XIE Zhiyong,et al. Numerical simulation on the forced convection heat transfer of porous medium for turbine engine heat exchanger applications[J]. Applied Thermal Engineering,2020,180: 115845.1-115845.12.
    [15]
    RASHIDI S,TAMAYOL A,VALIPOUR M S,et al. Fluid flow and forced convection heat transfer around a solid cylinder wrapped with a porous ring[J]. International Journal of Heat Mass Transfer,2013,63: 91-100. doi: 10.1016/j.ijheatmasstransfer.2013.03.006
    [16]
    孙硕. 填充泡沫金属换热管内含油制冷剂流动沸腾换热与压降特性研究 [D]. 上海: 上海交通大学, 2013.

    SUN Shuo. Research on flow boiling heat transfer and pressure drop characteristics of oil-bearing refrigerant in filled foamed metal heat exchange tube[D]. Shanghai: Shanghai Jiao Tong University, 2013. (in Chinese)
    [17]
    HUISSEUNE H,DE SCHAMPHELEIRE S,AMEEL B,et al. Comparison of metal foam heat exchangers to a finned heat exchanger for low Reynolds number applications[J]. International Journal of Heat and Mass Transfer,2015,89: 1-9. doi: 10.1016/j.ijheatmasstransfer.2015.05.013
    [18]
    MAO S,LOVE N,LEANOS A,et al. Correlation studies of hydrodynamics and heat transfer in metal foam heat exchangers[J]. Applied Thermal Engineering,2014,71(1): 104-108. doi: 10.1016/j.applthermaleng.2014.06.035
    [19]
    DAI Z,NAWAZ K,PARK Y,et al. A comparison of metal-foam heat exchangers to compact multilouver designs for air-side heat transfer applications[J]. Heat Transfer Engineering,2012,33(1/2/3): 21-30.
    [20]
    于霄,吕多,赵孟,等. 3D打印技术在航空发动机换热器研制中的应用展望[J]. 航空制造技术,2014,466(22): 43-46. doi: 10.3969/j.issn.1671-833X.2014.22.009

    YU Xiao,LÜ Duo,ZHAO Meng,et al. Application prospect of 3D printing technology in the development of aero-engine heat exchanger[J]. Aviation Manufacturing Technology,2014,466(22): 43-46. (in Chinese) doi: 10.3969/j.issn.1671-833X.2014.22.009
    [21]
    任勇翔,于霄,张筱喆,等. 类多孔结构超轻高效换热器流动传热特性研究[J]. 南京航空航天大学学报,2019,51(4): 449-455.

    REN Yongxiang,YU Xiao,ZHANG Xiaozhe,et al. Research on flow and heat transfer characteristics of ultra-light and high-efficiency heat exchanger with similar porous structure[J]. Journal of Nanjing University of Aeronautics and Astronautics,2019,51(4): 449-455. (in Chinese)
    [22]
    李俊,蒋彦龙,周年勇. 交叉式多股流板翅式换热器数值研究[J]. 航空动力学报,2016,31(5): 1087-1096.

    LI Jun,JIANG Yanlong,ZHOU Nianyong. Numerical study of cross-flow plate-fin heat exchanger[J]. Journal of Aerospace Power,2016,31(5): 1087-1096. (in Chinese)
    [23]
    MOHAMMADPOUR-GHADIKOLAIE M,SAFFAR-AVVAL M,MANSOORI Z,et al. Heat transfer investigation of a tube partially wrapped by metal porous layer as a potential novel tube for air cooled heat exchangers[J]. Journal of Heat Transfer,2019,141(1): 011802.1-011802.12.
    [24]
    刘银龙, 付衍琛, 闻洁, 等. 螺旋管式空气-空气换热器的设计和实验研究[C]//中国航天第三专业信息网第四十届技术交流会暨第四届空天动力联合会议论文集. 昆明: 推进技术, 2019, 25-28.
    [25]
    曾全生. 换热器热阻分析[J]. 化工设计,1998,23: 31-35.

    ZENG Quansheng. Thermal resistance analysis of heat exchanger[J]. Chemical Engineering Design,1998,23: 31-35. (in Chinese)
    [26]
    陶文铨. 数值传热学[M]. 西安: 西安交通大学出版社, 2001.
    [27]
    周飚. 管翅式换热器性能及结构综合优化的热设计方法[D]. 武汉: 华中科技大学, 2004.

    ZHOU Biao. Thermal design method for comprehensive optimization of performance and structure of tube-fin heat exchanger[D]. Wuhan: Huazhong University of Science and Technology, 2004. (in Chinese)
    [28]
    何雅玲, 陶文铨, 王煜, 等. 换热设备综合评价指标的研究进展[M]. 西安: 中国工程热物理学会(传热传质学), 2011.
    [29]
    吕多,陆海鹰,周建军,等. 临近空间飞行器推进系统预冷器关键技术[J]. 航空学报,2016,31(增刊): 119-126.

    LÜ Duo,LU Haiying,ZHOU Jianjun,et al. Key technology of precooler for propulsion system of near-space vehicle[J]. Acta Aeronautica et Astronautica Sinica,2016,31(Suppl.): 119-126. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (264) PDF downloads(90) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return