Volume 38 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
JIANG Le, LIU Zhenxia, LÜ Yaguo. Conjugate heat transfer of free liquid jet impinging on high-speed rotating disk[J]. Journal of Aerospace Power, 2023, 38(2):288-297 doi: 10.13224/j.cnki.jasp.20210322
Citation: JIANG Le, LIU Zhenxia, LÜ Yaguo. Conjugate heat transfer of free liquid jet impinging on high-speed rotating disk[J]. Journal of Aerospace Power, 2023, 38(2):288-297 doi: 10.13224/j.cnki.jasp.20210322

Conjugate heat transfer of free liquid jet impinging on high-speed rotating disk

doi: 10.13224/j.cnki.jasp.20210322
  • Received Date: 2021-06-24
    Available Online: 2022-11-09
  • To study the conjugate heat transfer characteristics of a free liquid jet impinging on a uniformly heated high-speed rotating disk, the effects of solid and fluid material parameters on the flow and heat transfer were analyzed by numerical simulation. The results showed that the local Nusselt number distribution corresponding to different solid material parameters was similar, and the maximum relative deviation of the Nusselt number at the same radius position was not more than 10%. Compared with the radial temperature distribution, the axial temperature difference was more affected by the change in the thermal conductivity of the solid material. The maximum radial temperature difference between copper and foam brick was only 3 times, while the difference between the maximum axial temperature difference approximately inverse to the thermal conductivity was 3471 times. The average radial velocity and heat transfer performance of liquid film on the disk surface decreased with the increase of fluid viscosity. The secondary peak heat transfer intensity corresponding to ammonia and water with less viscosity increased by more than 15% compared with the primary peak, and the secondary peak heat transfer intensity of lubricant oil with higher viscosity was only 50%—60% of the primary peak. When water and ammonia were used as the jet medium, the surface temperature of the disk remained almost constant, and the maximum temperature difference ratio was less than 7.86×10-4. When the lubricant oil was used as the jet medium, the temperature near the stagnation point changed drastically. In the region with R/d exceeding 2.5, the temperature distribution only fluctuated slightly.

     

  • loading
  • [1]
    LALLAVE J C,RAHMAN M M,KUMAR A. Numerical analysis of heat transfer on a rotating disk surface under confined liquid jet impingement[J]. International Journal of Heat and Fluid Flow,2007,28(4): 720-734. doi: 10.1016/j.ijheatfluidflow.2006.09.005
    [2]
    GOLDSTEIN R J,FRANCHETT M E. Heat transfer from a flat surface to an oblique impinging jet[J]. Journal of Heat Transfer,1988,110(1): 84-90. doi: 10.1115/1.3250477
    [3]
    STEVENS J,WEBB B W. Local heat transfer coefficients under an axisymmetric, single-phase liquid jet[J]. Journal of Heat Transfer,1991,113(1): 71-78. doi: 10.1115/1.2910554
    [4]
    CORNARO C,FLEISCHER A S,ROUNDS M,et al. Jet impingement cooling of a convex semi-cylindrical surface[J]. International Journal of Thermal Sciences,2001,40(10): 890-898. doi: 10.1016/S1290-0729(01)01275-3
    [5]
    SAGOT B,ANTONINI G,CHRISTGEN A,et al. Jet impingement heat transfer on a flat plate at a constant wall temperature[J]. International Journal of Thermal Sciences,2008,47(12): 1610-1619. doi: 10.1016/j.ijthermalsci.2007.10.020
    [6]
    ZEITOUN O. Heat transfer between a vertical water jet and a horizontal square surface[J]. Experimental Heat Transfer,2012,25(3): 206-221.
    [7]
    HOSAIN M L,FDHILA R B,DANERYD A. Heat transfer by liquid jets impinging on a hot flat surface[J]. Applied Energy,2016,164: 934-943. doi: 10.1016/j.apenergy.2015.08.038
    [8]
    SHUKLA A K,DEWAN A. Flow and thermal characteristics of jet impingement on a flat plate for small nozzle to plate spacing using LES[J]. International Journal of Thermal Sciences,2019,145: 106005.1-106005.17. doi: 10.1016/j.ijthermalsci.2019.106005
    [9]
    宛鹏翔,范俊,韩省思,等. 冲击射流流动换热超大涡模拟研究[J]. 推进技术,2020,41(10): 2237-2247. doi: 10.13675/j.cnki.tjjs.190420

    WAN Pengxiang,FAN Jun,HAN Xingsi,et al. Very-large eddy simulation of impinging jet flow and heat transfer[J]. Journal of Propulsion Technology,2020,41(10): 2237-2247. (in Chinese) doi: 10.13675/j.cnki.tjjs.190420
    [10]
    朱泽辉,聂欣,廖海波. 基于低雷诺数k-ε模型冲击射流传热的数值模拟[J]. 水电能源科学,2021,39(4): 157-160, 203.

    ZHU Zehui,NIE Xin,LIAO Haibo. Numerical simulation of impact jet heat transfer based on low Reynolds number k-ε model[J]. Water Resources and Power,2021,39(4): 157-160, 203. (in Chinese)
    [11]
    RAVANJI A,ZARGARABADI M R. Effects of pin-fin shape on cooling performance of a circular jet impinging on a flat surface[J]. International Journal of Thermal Sciences,2021,161: 106684.1-106684.11.
    [12]
    METZGER D E,GROCHOWSKY L. Heat transfer between an impinging jet and a rotating disk[J]. Journal of Heat Transfer,1977,99(4): 663-663. doi: 10.1115/1.3450761
    [13]
    CARPER H J,SAAVEDRA J J,SUWANPRATEEP T. Liquid jet impingement cooling of a rotating disk[J]. Journal of Heat Transfer,1986,108(3): 540-546. doi: 10.1115/1.3246968
    [14]
    CHEN Y M,LEE W T,WU S J. Heat (mass) transfer between an impinging jet and a rotating disk[J]. Heat and Mass Transfer,1998,34(2/3): 195-201.
    [15]
    SHEVCHUK I V. Exact solution of the heat transfer problem for a rotating disk under uniform jet impingement[J]. Fluid Dynamics,2003,38(1): 18-27. doi: 10.1023/A:1023326709819
    [16]
    RAHMAN M M,LALLAVE J C. Transient conjugate heat transfer during free liquid jet impingement on a rotating solid disk[J]. Numerical Heat Transfer Applications,2009,55(3): 229-251. doi: 10.1080/10407780802628987
    [17]
    LALLAVE J C,RAHMAN M M. Numerical simulation of transient thermal transport on a rotating disk under partially confined laminar liquid jet impingement[J]. Journal of Heat Transfer,2010,132(5): 052201.1-052201.8.
    [18]
    HARMON W V, ELSTON C A, WRIGHT L M. Experimental investigation of leading edge impingement under high rotation numbers with racetrack shaped jets[R]. ASME Paper GT2014-26181, 2014.
    [19]
    蔡学成,李芹,杨学森,等. 旋转对冲击射流流动及换热影响的数值研究[J]. 航空动力学报,2021,36(1): 70-77. doi: 10.13224/j.cnki.jasp.2021.01.009

    CAI Xuecheng,LI Qin,YANG Xuesen,et al. Numerical investigation on effect of rotation on flow and heat transfer of impinging jets[J]. Journal of Aerospace Power,2021,36(1): 70-77. (in Chinese) doi: 10.13224/j.cnki.jasp.2021.01.009
    [20]
    李炎军,徐伟鹏,刘振侠,等. 滑油射流冲击旋转壁面的流动换热数值模拟研究[J]. 推进技术,2022,43(1): 246-253. doi: 10.13675/j.cnki.tjjs.200293

    LI Yanjun,XU Weipeng,LIU Zhenxia,et al. Numerical study of flow and heat transfer characteristics of oil jet impingement on rotating wall[J]. Journal of Propulsion Technology,2022,43(1): 246-253. (in Chinese) doi: 10.13675/j.cnki.tjjs.200293
    [21]
    MAHDAVI M,SHARIFPUR M,MEYER J P,et al. Thermal analysis of a nanofluid free jet impingement on a rotating disk using volume of fluid in combination with discrete modelling[J]. International Journal of Thermal Sciences,2020,158: 106532.1-106532.13.
    [22]
    HIRT C W,NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics,1981,39(1): 201-225. doi: 10.1016/0021-9991(81)90145-5
    [23]
    BAGHEL K,SRIDHARAN A,MURALLIDHARAN J S. Experimental and numerical study of inclined free surface liquid jet impingement[J]. International Journal of Thermal Sciences,2020,154: 106389.1-106389.16. doi: 10.1016/j.ijthermalsci.2020.106389
    [24]
    YAKHOT V,ORSZAG S A. Renormalization-group analysis of turbulence[J]. Physical Review Letters,1986,57(14): 1722-1724. doi: 10.1103/PhysRevLett.57.1722
    [25]
    BRACKBILL J U,KOTHE D B,ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics,1992,100(2): 335-354. doi: 10.1016/0021-9991(92)90240-Y
    [26]
    ASTARITA T,CARDONE G. Convective heat transfer on a rotating disk with a centred impinging round jet[J]. International Journal of Heat and Mass Transfer,2008,51(7/8): 1562-1572.
    [27]
    OZAR B,CETEGEN B M,FAGHRI A. Experiments on heat transfer in a thin liquid film flowing over a rotating disk[J]. Journal of Heat Transfer,2004,126(2): 184-192. doi: 10.1115/1.1652044
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (257) PDF downloads(184) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return