Volume 39 Issue 5
May  2024
Turn off MathJax
Article Contents
FENG Shuang, LI Baokuan, YANG Xiaoxi, et al. Effect of nozzle structure and jet parameters on the temperature characteristics of mass injection and pre-compressor cooling[J]. Journal of Aerospace Power, 2024, 39(5):20210566 doi: 10.13224/j.cnki.jasp.20210566
Citation: FENG Shuang, LI Baokuan, YANG Xiaoxi, et al. Effect of nozzle structure and jet parameters on the temperature characteristics of mass injection and pre-compressor cooling[J]. Journal of Aerospace Power, 2024, 39(5):20210566 doi: 10.13224/j.cnki.jasp.20210566

Effect of nozzle structure and jet parameters on the temperature characteristics of mass injection and pre-compressor cooling

doi: 10.13224/j.cnki.jasp.20210566
  • Received Date: 2021-10-09
    Available Online: 2023-12-28
  • Excessive high intake temperature is one of the key problems limiting the performance of aero-engines, mass injection and pre-compressor cooling (MIPCC) technology can effectively reduce the intake temperature of aero-engine. In order to investigate the influence of MIPCC technology on the temperature field in the inlet, a mathematical model of the droplet atomization and evaporation process was established. Based on Euler-Lagrange method, the mathematical model was used to realize the two-way coupling of the gas-liquid two-phase and describe the MIPCC process in the intake port of an aero-engine. Compared with the existing test results, the accuracy of the mathematical model was verified. The effects of water-air ratio, injection velocity, particle diameter and nozzle cone angle on the cooling effect and temperature distribution of the inlet were studied by using the mathematical model. The results showed that when the water-air ratio increased from 0.02 to 0.055, the cooling ratio increased from 8.10% to 19.87%, and the evaporation rate decreased from 85.76% to 79.80%; when the water-air ratio was 0.055, the injection velocity was 10 m/s, the droplet size was 25 μm and the nozzle cone angle was 15°, the maximum temperature drop coefficient was 22.77%. Increasing the nozzle cone angle and decreasing the injection velocity made the temperature field distribution in the outlet section of the inlet more uniform.

     

  • loading
  • [1]
    尚守堂,田方超,扈鹏飞. 涡轮发动机射流预冷关键技术分析[J]. 航空科学技术,2018,29(1): 1-3. SHANG Shoutang,TIAN Fangchao,HU Pengfei. Key technology analysis of mass injecting pre-compressor cooling turbine engine[J]. Aeronautical Science & Technology,2018,29(1): 1-3. (in Chinese

    SHANG Shoutang, TIAN Fangchao, HU Pengfei. Key technology analysis of mass injecting pre-compressor cooling turbine engine[J]. Aeronautical Science & Technology, 2018, 29(1): 1-3. (in Chinese)
    [2]
    芮长胜,张超,越冬峰. 射流预冷涡轮发动机技术研究及发展[J]. 航空科学技术,2015,26(10): 53-59. RUI Changsheng,ZHANG Chao,YUE Dongfeng. Technical study and development of mass injecting pre-compressor cooling turbine engine[J]. Aeronautical Science & Technology,2015,26(10): 53-59. (in Chinese

    RUI Changsheng, ZHANG Chao, YUE Dongfeng. Technical study and development of mass injecting pre-compressor cooling turbine engine[J]. Aeronautical Science & Technology, 2015, 26(10): 53-59. (in Chinese)
    [3]
    YOUNG D A,OLDS J. Responsive access small cargo affordable launch (RASCAL) independent performance evaluation[R]. AIAA 2005-3241,2005.
    [4]
    KLOESEL K,CLARK C. Preliminary MIPCC enhanced F-4 and F-15 performance characteristics for a first stage reusable launch vehicle[R]. AIAA 2013-5528,2013.
    [5]
    CARTER P,BALEPIN V. Mass injection and precompressor cooling engines analyses[R]. AIAA 2002-4127,2002.
    [6]
    LIN Aqiang,ZHOU Jie,FAWZY H,et al. Evaluation of mass injection cooling on flow and heat transfer characteristics for high-temperature inlet air in a MIPCC engine[J]. International Journal of Heat and Mass Transfer,2019,135: 620-630. doi: 10.1016/j.ijheatmasstransfer.2019.02.025
    [7]
    LIN Aqiang,ZHENG Qun,JIANG Yuting,et al. Sensitivity of air/mist non-equilibrium phase transition cooling to transient characteristics in a compressor of gas turbine[J]. International Journal of Heat and Mass Transfer,2019,137: 882-894. doi: 10.1016/j.ijheatmasstransfer.2019.03.143
    [8]
    CHAKER M,MEHER-HOMJI C B,MEE T III. Inlet fogging of gas turbine engines: test and analytical investigations on impaction pin fog nozzle behavior[J]. Journal of Engineering for Gas Turbines and Power,2006,128(4): 826-839. doi: 10.1115/1.1808429
    [9]
    CHAKER M,MEHER-HOMJI C B,MEE T III. Inlet fogging of gas turbine engines: Part Ⅰ fog droplet thermodynamics,heat transfer,and practical considerations[J]. Journal of Engineering for Gas Turbines and Power,2004,126(3): 545-558. doi: 10.1115/1.1712981
    [10]
    CHAKER M,MEHER-HOMJI C B,MEE T. Inlet fogging of gas turbine engines: Part B fog droplet sizing analysis,nozzle types,measurement and testing [R]. Amsterdam,The Netherlands: ASME,2002.
    [11]
    商旭升,蔡元虎,陈玉春,等. 高速飞行器用射流预冷却涡轮基发动机性能模拟[J]. 中国空间科学技术,2005,25(4): 54-58. SHANG Xusheng,CAI Yuanhu,CHEN Yuchun,et al. Performance simulation of the mass injection pre-cooled TBCC engine for hypersonic vehicles[J]. Chinese Space Science and Technology,2005,25(4): 54-58. (in Chinese

    SHANG Xusheng, CAI Yuanhu, CHEN Yuchun, et al. Performance simulation of the mass injection pre-cooled TBCC engine for hypersonic vehicles[J]. Chinese Space Science and Technology, 2005, 25(4): 54-58. (in Chinese)
    [12]
    涂洪妍,邓远灏,康松,等. 水气比对射流预冷喷射特性影响的数值研究[J]. 推进技术,2017,38(6): 1302-1309. TU Hongyan,DENG Yuanhao,KANG Song,et al. Numerical simulation for effects for water/air ratio on injection characteristics with water injection pre-compressor cooling[J]. Journal of Propulsion Technology,2017,38(6): 1302-1309. (in Chinese

    TU Hongyan, DENG Yuanhao, KANG Song, et al. Numerical simulation for effects for water/air ratio on injection characteristics with water injection pre-compressor cooling[J]. Journal of Propulsion Technology, 2017, 38(6): 1302-1309. (in Chinese)
    [13]
    耿欣,薛秀生,王晓良. 射流预冷试验用温度探针的设计与测试[J]. 航空发动机,2020,46(3): 84-89. GENG Xin,XUE Xiusheng,WANG Xiaoliang. Design and test of temperature probe for jet pre-cooling test[J]. Aeroengine,2020,46(3): 84-89. (in Chinese

    GENG Xin, XUE Xiusheng, WANG Xiaoliang. Design and test of temperature probe for jet pre-cooling test[J]. Aeroengine, 2020, 46(3): 84-89. (in Chinese)
    [14]
    耿欣,王晓良,薛秀生. 射流预冷试验防水温度传感器设计[J]. 航空发动机,2019,45(2): 69-73. GENG Xin,WANG Xiaoliang,XUE Xiusheng. Design of water-proof temperature sensor for jet pre-cooling test[J]. Aeroengine,2019,45(2): 69-73. (in Chinese

    GENG Xin, WANG Xiaoliang, XUE Xiusheng. Design of water-proof temperature sensor for jet pre-cooling test[J]. Aeroengine, 2019, 45(2): 69-73. (in Chinese)
    [15]
    林阿强,郑群,吴锋,等. 航空涡轮发动机射流预冷技术研究[J]. 推进技术,2020,41(4): 721-728. LIN Aqiang,ZHENG Qun,WU Feng,et al. Investigation on mass injection pre-cooling technology of aero-turbine engine[J]. Journal of Propulsion Technology,2020,41(4): 721-728. (in Chinese

    LIN Aqiang, ZHENG Qun, WU Feng, et al. Investigation on mass injection pre-cooling technology of aero-turbine engine[J]. Journal of Propulsion Technology, 2020, 41(4): 721-728. (in Chinese)
    [16]
    叶巍,乔渭阳,侯敏杰. 发动机在进气温度畸变条件下的特性研究[J]. 推进技术,2008,29(6): 677-680. YE Wei,QIAO Weiyang,HOU Minjie. Study for the effects of inlet temperature distortion on engine performance[J]. Journal of Propulsion Technology,2008,29(6): 677-680. (in Chinese

    YE Wei, QIAO Weiyang, HOU Minjie. Study for the effects of inlet temperature distortion on engine performance[J]. Journal of Propulsion Technology, 2008, 29(6): 677-680. (in Chinese)
    [17]
    谢业平,刘永泉,潘宝军. 真实进气条件下发动机气动稳定性计算方法[J]. 航空动力学报,2019,34(4): 804-812. XIE Yeping,LIU Yongquan,PAN Baojun. Aerodynamic calculation method of engine stability under actual inlet condition[J]. Journal of Aerospace Power,2019,34(4): 804-812. (in Chinese

    XIE Yeping, LIU Yongquan, PAN Baojun. Aerodynamic calculation method of engine stability under actual inlet condition[J]. Journal of Aerospace Power, 2019, 34(4): 804-812. (in Chinese)
    [18]
    刘旭峰,常鸿雯,薛洪科,等. 射流预冷装置温降与流阻特性试验研究[J]. 航空发动机,2018,44(2): 81-86. LIU Xufeng,CHANG Hongwen,XUE Hongke,et al. Investigation on temperature drop and flow resistance characteristics of mass injection pre-compressor cooling device[J]. Aeroengine,2018,44(2): 81-86. (in Chinese

    LIU Xufeng, CHANG Hongwen, XUE Hongke, et al. Investigation on temperature drop and flow resistance characteristics of mass injection pre-compressor cooling device[J]. Aeroengine, 2018, 44(2): 81-86. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (38) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return