Volume 39 Issue 5
Jan.  2024
Turn off MathJax
Article Contents
LIU Shuaipeng, GENG Shaojuan, JIN Yun, et al. Supersonic and transonic airfoil optimization design based on superimposing thickness on suction surface[J]. Journal of Aerospace Power, 2024, 39(5):20210577 doi: 10.13224/j.cnki.jasp.20210577
Citation: LIU Shuaipeng, GENG Shaojuan, JIN Yun, et al. Supersonic and transonic airfoil optimization design based on superimposing thickness on suction surface[J]. Journal of Aerospace Power, 2024, 39(5):20210577 doi: 10.13224/j.cnki.jasp.20210577

Supersonic and transonic airfoil optimization design based on superimposing thickness on suction surface

doi: 10.13224/j.cnki.jasp.20210577
  • Received Date: 2021-10-13
    Available Online: 2023-12-29
  • To improve the optimization design quality of axial compressor airfoil, the parametric modeling method based on superimposing thickness on suction surface was proposed. The compressor airfoil optimization platform based on Kriging surrogate model and Differential Evolution algorithms was developed, and the control parameters of the suction surface were used as optimization variables to optimize the performance of transonic and supersonic airfoils. The results showed that the parametric modeling method based on superposing thickness distribution on suction surface can express the airfoil well and was successfully applied to the optimization design platform. The loss of optimized transonic and supersonic airfoils at design condition decreased by 10.66 % and 7.4%, respectively. The analysis showed that as for the main characteristics of optimized transonic airfoil, the curvature of the profile near the leading edge of suction surface decreased, and the shock wave intensity decreased. Therefore, the shock wave loss and boundary layer loss decreased, the load at the middle and rear positions increased and the expansion capacity of the expansion channel increased. The optimization of supersonic airfoil should consider the profile of suction surface within the aft expansion passage additionally, because of more significant boundary layer influence. The position and width of throat can affect the chocking incidence angle.

     

  • loading
  • [1]
    宋寅. 先进高负荷压气机气动设计技术综述[J]. 分布式能源,2018,3(3): 1-9. SONG Yin. Review on aerodynamics design of advanced highly-loaded compressor[J]. Distributed Energy,2018,3(3): 1-9. (in Chinese

    SONG Yin. Review on aerodynamics design of advanced highly-loaded compressor[J]. Distributed Energy, 2018, 3(3): 1-9. (in Chinese)
    [2]
    KÖLLER U,MÖNIG R,KÜSTERS B,et al. Development of advanced compressor airfoils for heavy-duty gas turbines: Part Ⅰ design and optimization[R]ASME 99-GT-095,1999.
    [3]
    徐全勇,阙晓斌,吴锋. 可控扩散叶型的扩稳优化[J]. 航空动力学报,2017,32(7): 1762-1768. XU Quanyong,QUE Xiaobin,WU Feng. Aerodynamic stability optimization of controlled diffusion airfoil[J]. Journal of Aerospace Power,2017,32(7): 1762-1768. (in Chinese

    XU Quanyong, QUE Xiaobin, WU Feng. Aerodynamic stability optimization of controlled diffusion airfoil[J]. Journal of Aerospace Power, 2017, 32(7): 1762-1768. (in Chinese)
    [4]
    SANGER N L. The use of optimization techniques to design-controlled diffusion compressor blading[J]. Journal of Engineering for Power,1983,105(2): 256-264. doi: 10.1115/1.3227410
    [5]
    周铸,黄江涛,黄勇,等. CFD技术在航空工程领域的应用、挑战与发展[J]. 航空学报,2017,38(3): 020891. ZHOU Zhu,HUANG Jiangtao,HUANG Yong,et al. CFD technology in aeronautic engineering field: Applications,challenges and development[J]. Acta Aeronautica et Astronautica Sinica,2017,38(3): 020891. (in Chinese

    ZHOU Zhu, HUANG Jiangtao, HUANG Yong, et al. CFD technology in aeronautic engineering field: Applications, challenges and development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 020891. (in Chinese)
    [6]
    高正红,王超. 飞行器气动外形设计方法研究与进展[J]. 空气动力学学报,2017,35(4): 516-528,454. GAO Zhenghong,WANG Chao. Aerodynamic shape design methods for aircraft: Status and trends[J]. Acta Aerodynamica Sinica,2017,35(4): 516-528,454. (in Chinese doi: 10.7638/kqdlxxb-2017.0058

    GAO Zhenghong, WANG Chao. Aerodynamic shape design methods for aircraft: Status and trends[J]. Acta Aerodynamica Sinica, 2017, 35(4): 516-528, 454. (in Chinese) doi: 10.7638/kqdlxxb-2017.0058
    [7]
    VIANA F A C,SIMPSON T W,BALABANOV V,et al. Special section on multidisciplinary design optimization: Metamodeling in multidisciplinary design optimization: How far have we really come?[J]. AIAA Journal,2014,52(4): 670-690. doi: 10.2514/1.J052375
    [8]
    韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报,2016,37(11): 3197-3225. HAN Zhonghua. Kriging surrogate model and its application to design optimization: A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica,2016,37(11): 3197-3225. (in Chinese

    HAN Zhonghua. Kriging surrogate model and its application to design optimization: A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225. (in Chinese)
    [9]
    韩忠华,许晨舟,乔建领,等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报,2020,41(5): 623344. HAN Zhonghua,XU Chenzhou,QIAO Jianling,et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica,2020,41(5): 623344. (in Chinese

    HAN Zhonghua, XU Chenzhou, QIAO Jianling, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623344. (in Chinese)
    [10]
    SIEVERDING F,RIBI B,CASEY M,et al. Design of industrial axial compressor blade sections for optimal range and performance[J]. Journal of Turbomachinery,2004,126(2): 323-331. doi: 10.1115/1.1737782
    [11]
    阙晓斌,蒋洪德. 重型燃气轮机压气机高雷诺数前转捩叶型设计[J]. 航空动力学报,2013,28(10): 2309-2315. QUE Xiaobin,JIANG Hongde. Design of high Reynolds number compressor airfoil with early transition for heavy-duty gas turbine[J]. Journal of Aerospace Power,2013,28(10): 2309-2315. (in Chinese

    QUE Xiaobin, JIANG Hongde. Design of high Reynolds number compressor airfoil with early transition for heavy-duty gas turbine[J]. Journal of Aerospace Power, 2013, 28(10): 2309-2315. (in Chinese)
    [12]
    CHEN Naixing,ZHANG Hongwu,HUANG Weiguang,et al. Study on aerodynamic design optimization of turbomachinery blades[J]. Journal of Thermal Science,2005,14(4): 298-304. doi: 10.1007/s11630-005-0048-5
    [13]
    孔庆国,杜旭博,羌晓青,等. 基于中弧线曲率控制的压气机叶型优化[J]. 推进技术,2020,41(8): 1740-1747. KONG Qingguo,DU Xubo,QIANG Xiaoqing,et al. Compressor airfoil optimization based on camber curvature control[J]. Journal of Propulsion Technology,2020,41(8): 1740-1747. (in Chinese

    KONG Qingguo, DU Xubo, QIANG Xiaoqing, et al. Compressor airfoil optimization based on camber curvature control[J]. Journal of Propulsion Technology, 2020, 41(8): 1740-1747. (in Chinese)
    [14]
    成金鑫,向航,陈江. 基元叶栅攻角特性多目标优化[J]. 航空动力学报,2017,32(12): 3064-3072. CHENG Jinxin,XIANG Hang,CHEN Jiang. Multi-objective optimization of incidence features for cascade[J]. Journal of Aerospace Power,2017,32(12): 3064-3072. (in Chinese

    CHENG Jinxin, XIANG Hang, CHEN Jiang. Multi-objective optimization of incidence features for cascade[J]. Journal of Aerospace Power, 2017, 32(12): 3064-3072. (in Chinese)
    [15]
    SOMMER L,BESTLE D. Curvature driven two-dimensional multi-objective optimization of compressor blade sections[J]. Aerospace Science and Technology,2011,15(4): 334-342. doi: 10.1016/j.ast.2010.08.008
    [16]
    SCHREIBER H A,STARKEN H. Experimental cascade analysis of a transonic compressor rotor blade section[J]. Journal of Engineering for Gas Turbines and Power,1984,106(2): 288-294. doi: 10.1115/1.3239561
    [17]
    HAN Z H,ZHANG K S. Surrogate-based optimization[M]. London,United Kingdom: InTech Book,2012: 343-362.
    [18]
    JONES D R,SCHONLAU M,WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization,1998,13(4): 455-492. doi: 10.1023/A:1008306431147
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (27) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return