Volume 38 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
YANG Maotao, LIANG Shuang, YI Miaorong, et al. Identification of turbulence eddy viscosity coefficient in supersonic isolation section based on deep neural network[J]. Journal of Aerospace Power, 2023, 38(2):312-324 doi: 10.13224/j.cnki.jasp.20220168
Citation: YANG Maotao, LIANG Shuang, YI Miaorong, et al. Identification of turbulence eddy viscosity coefficient in supersonic isolation section based on deep neural network[J]. Journal of Aerospace Power, 2023, 38(2):312-324 doi: 10.13224/j.cnki.jasp.20220168

Identification of turbulence eddy viscosity coefficient in supersonic isolation section based on deep neural network

doi: 10.13224/j.cnki.jasp.20220168
  • Received Date: 2022-03-30
    Available Online: 2022-11-23
  • The Reynolds-averaged Navier-Stokes (RANS) equation is still widely used in engineering design due to its low computational cost. In order to further improve the calculation accuracy and reduce the time, a deep neural network (deep neural networks, DNN) method was applied to adaptively identify the steady-state turbulent eddy viscosity coefficient. Taking the detection flow field generated at the front edge of the shock train in the isolation section as an example, the Wilcox-2006 $k$-$ \omega $ turbulence model was used for simulation. A steady-state turbulent eddy-viscous flow field was generated as a training dataset for model learning under different back pressure conditions. Finally, tests were carried out under different back pressure conditions. The results showed that the proposed DNN method can quickly predict the value of the turbulent eddy viscosity coefficient. The coefficient of determination was greater than 99%, and the predicted flow field results were basically consistent with the real flow field, which further verified the feasibility of deep learning technology in turbulence model parameter identification.

     

  • loading
  • [1]
    陈植. 超燃冲压发动机隔离段流动机理及其控制的试验研究[D]. 合肥: 国防科学技术大学, 2015.

    CHEN Zhi. Experimental study on flow mechanism and control of isolation section of scramjet engine[D]. Hefei: National University of Defense Technology, 2015. (in Chinese)
    [2]
    DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research: what next?[J]. AIAA Journal,2001,39(8): 1517-1531. doi: 10.2514/2.1476
    [3]
    贺武生. 超燃冲压发动机研究综述[J]. 火箭推进,2005(1): 29-32. doi: 10.3969/j.issn.1672-9374.2005.01.006

    HE Wusheng. A review of scramjet research[J]. Journal of Rocket Propulsion,2005(1): 29-32. (in Chinese) doi: 10.3969/j.issn.1672-9374.2005.01.006
    [4]
    MATSUO K. Shock train and pseudo-shock phenomena in supersonic internal flows[J]. Journal of Thermal Science,2003(3): 204-208.
    [5]
    詹王杰,严红. 隔离段内激波串受稳态和脉动背压影响的数值研究[J]. 推进技术,2021,42(5): 980-990. doi: 10.13675/j.cnki.tjjs.190671

    ZHAN Wangjie,YAN Hong. Numerical study on the influence of shock string on steady-state and pulsating back pressure in isolation section[J]. Journal of Propulsion Technology,2021,42(5): 980-990. (in Chinese) doi: 10.13675/j.cnki.tjjs.190671
    [6]
    吴正园,莫凡,高振勋,等. 湍流边界层与高温气体效应耦合的直接数值模拟[J]. 空气动力学学报,2020,38(6): 1111-1119. doi: 10.7638/kqdlxxb-2020.0132

    WU Zhengyuan,MO Fan,GAO Zhenxun,et al. Direct numerical simulation of coupling of turbulent boundary layer and hot gas effect[J]. Acta Aerodynamica Sinica,2020,38(6): 1111-1119. (in Chinese) doi: 10.7638/kqdlxxb-2020.0132
    [7]
    XIAO Heng,CINNELLA P. Quantification of model uncertainty in RANS simulations: a review[J]. Progress in Aerospace Science,2019,108: 1-31. doi: 10.1016/j.paerosci.2018.10.001
    [8]
    尹宇辉,李浩然,张宇飞,等. 机器学习辅助湍流建模在分离流预测中的应用[J]. 空气动力学学报,2021,39(2): 23-32. doi: 10.7638/kqdlxxb-2020.0155

    YIN Yuhui,LI Haoran,ZHANG Yufei,et al. Application of machine learning-assisted turbulence modeling in separated flow prediction[J]. Acta Aerodynamica Sinica,2021,39(2): 23-32. (in Chinese) doi: 10.7638/kqdlxxb-2020.0155
    [9]
    CRAFT T J,LAUNDER B E,SUGA K. Development and application of a cubic eddy-viscosity model of turbulence[J]. International Journal of Heat and Fluid Flow,1996,17(2): 108-115. doi: 10.1016/0142-727X(95)00079-6
    [10]
    SPALART P R. Strategies for turbulence modelling and simulations[J]. International Journal of Heat and Fluid Flow,2000,21(3): 252-263. doi: 10.1016/S0142-727X(00)00007-2
    [11]
    STEFANO M,HOSDER S,BAURLE R A. Effect of turbulence model uncertainty on scramjet isolator flowfield analysis[J]. Journal of Propulsion and Power,2019,36(1): 1-14.
    [12]
    SCHAEFER J,HOSDER S,WEST T,et al. Uncertainty quantification of turbulence model closure coefficients for transonic wall-bounded flows[J]. AIAA Journal,2017,55(1): 195-213. doi: 10.2514/1.J054902
    [13]
    XIAO H,WU J L,WANG J X,et al. Quantifying and reducing model form uncertainties in Reynolds-averaged Navier-Stokes simulations: a data-driven, physics informed Bayesian approach[J]. Journal of Computational Physics,2016,324: 115-136. doi: 10.1016/j.jcp.2016.07.038
    [14]
    MAULIK R,SAN O,RASHEED A,et al. Data-driven deconvolution for large eddy simulations of Kraichnan turbulence[J]. Physics of Fluids,2018,30(12): 125109.1-125109.15.
    [15]
    YARLANKI S, RAJENDRAN B, HAMANN H. Estimation of turbulence closure coefficients for data centers using machine learning algorithms[R]. San Diego, Canada: 13th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2012.
    [16]
    ZHANG Zejia, DURAISAM K. Machine learning methods for data-driven turbulence modeling[R]. Dallas, US: 22nd AIAA Computational Fluid Dynamics Conference, 2015.
    [17]
    KAANDORP M. Machine learning for data-driven RANS turbulence modelling[D]. Delft, US: Delft University of Technology, 2018.
    [18]
    SAAKAAR B,YASER A,SHAOWU P,et al. Prediction of aerodynamic flow fields using convolutional neural networks[J]. Computational Mechanics,2019,64(2): 525-545. doi: 10.1007/s00466-019-01740-0
    [19]
    ZHU Linyang,ZHANG Weiwei,KOU Jiaqing,et al. Machine learning methods for turbulence modeling in subsonic flows around airfoils[J]. Physics of Fluids,2019,31(1): 015105.1-015105.14.
    [20]
    PANDA J P,WARRIOR H V. Data-driven prediction of complex flow field over an axisymmetric body of revolution using machine learning[J]. Fluid Dynamics (preprint),2021,arXiv: 2111.07937.
    [21]
    SHUVAYAN B,ANANTHAKRISHNAN B,HIDEAKI O. Fast estimation of internal flowfields in scramjet intakes via reduced-order modeling and machine learning[J]. Physics of Fluids,2021,33(10): 106110.1-106110.24.
    [22]
    SUN Xuxiang,CAO Wenbo,LIU Yilang,et al. High Reynolds number airfoil turbulence modeling method based on machine learning technique[J]. Computers and Fluids,2022,236: 105298.1-105298.30.
    [23]
    何创新,邓志文,刘应征. 湍流数据同化技术及应用[J]. 航空学报,2021,42(4): 167-184.

    HE Chuangxin,DENG Zhiwen,LIU Yingzheng. Turbulent data assimilation technology and its application[J]. Chinese Journal of Aeronautics,2021,42(4): 167-184. (in Chinese)
    [24]
    LI Yunfei,CHANG Juntao,KONG Chen,et al. Recent progress of machine learning in flow modeling and active flow control[J]. Chinese Journal of Aeronautics,2021,35(4): 14-44.
    [25]
    KONG Chen,CHANG Juntao,LI Yunfei,et al. Flowfield reconstruction and shock train leading edge detection in scramjet isolators[J]. AIAA Journal,2020,58(9): 4068-4080. doi: 10.2514/1.J059302
    [26]
    KONG Chen,CHANG Juntao,LI Yunfei,et al. A deep learning approach for the velocity field prediction in a scramjet isolator[J]. Physics of Fluids,2021,33(2): 026103.1-026103.18.
    [27]
    KONG Chen,CHANG Juntao,WANG Ziao,et al. Prediction model of flow field in an isolator over various operating conditions[J]. Aerospace Science and Technology,2021,111: 106576.1-106576.14.
    [28]
    LI Nan,CHANG Juntao,XU Kejing,et al. Prediction dynamic model of shock train with complex background waves[J]. Physics of Fluids,2017,29: 116103.1-116103.16.
    [29]
    KUKREJA H,BHARATH N,SIDDESH C S,et al. An introduction to artificial neural network[J]. International Journal of Advance Research and Innovative Ideas in Education,2016,1: 27-30.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (195) PDF downloads(90) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return