Volume 39 Issue 5
Jan.  2024
Turn off MathJax
Article Contents
SONG Leiyang, YAO Qian, HUANG Xiaofeng, et al. Flow field and flame response characteristics of stratified swirl flame with external excitation[J]. Journal of Aerospace Power, 2024, 39(5):20220362 doi: 10.13224/j.cnki.jasp.20220362
Citation: SONG Leiyang, YAO Qian, HUANG Xiaofeng, et al. Flow field and flame response characteristics of stratified swirl flame with external excitation[J]. Journal of Aerospace Power, 2024, 39(5):20220362 doi: 10.13224/j.cnki.jasp.20220362

Flow field and flame response characteristics of stratified swirl flame with external excitation

doi: 10.13224/j.cnki.jasp.20220362
  • Received Date: 2022-05-23
    Available Online: 2023-09-25
  • To study the feedback of shear swirl and flame and its induced combustion instability mechanism in the lean direct injection (LDI) combustor, the dynamic response of flow field and flame excited with external excitation was studied by large eddy simulation (LES) combined with phase space reconstruction and modal decomposition. Comparing the experimental results of the flow field with the time averaged results of LES, it was found that the velocity distribution of the numerical calculation and the size and position of the vortex structure were in good agreement with the experimental results. The analysis of LES acquisition signal and instantaneous flow field showed that the pressure and heat release pulsation were in the limit cycle oscillation state. The contraction and expansion of the recirculation zone under velocity pulsation led to the periodic compression and relaxation of the fuel and heat release zone, resulting in quasi-periodic heat release pulsation. The modal decomposition of the data on the meridian plane showed that the velocity and heat release pulsation were mainly concentrated in the shear layer and the jet region. Meanwhile, the main pulsation modes were all longitudinal pulsations excited by the inlet velocity.

     

  • loading
  • [1]
    LIEUWEN T C, YANG V. Gas turbine emissions[M]. Cambridge, UK: Cambridge University Press, 2013.
    [2]
    CORBETT N C,LINES N P. Control requirements for the RB 211 low-emission combustion system[J]. Journal of Engineering for Gas Turbines and Power,1994,116(3): 527-533. doi: 10.1115/1.2906851
    [3]
    张弛,林宇震,徐华胜,等. 民用航空发动机低排放燃烧室技术发展现状及水平[J]. 航空学报,2014,35(2): 332-350.

    ZHANG Chi,LIN Yuzhen,XU Huasheng,et al. Development status and level of low emissions combustor technologies for civil aero-engine[J]. Acta Aeronautica et Astronautica Sinica,2014,35(2): 332-350. (in Chinese)
    [4]
    姜磊. 低NOx双旋流燃气燃烧器流动及燃烧特性的实验研究[D]. 北京: 中国科学院大学, 2017.

    JIANG Lei. Experimental investigations of flow and combustioin characteristics for a low NOx dual-swirl gas burner[D]. Beijing: University of Chinese Academy of Sciences, 2017. (in Chinese)
    [5]
    LEE C M, CHANG C T, HERBON J, et al. NASA project develops next-generation low-emissions combustor technologies[R]. AIAA-2013-0540, 2013
    [6]
    YOON C, GEJJI R, ANDERSON W. Computational investigation of combustion dynamics in a lean direct injection gas turbine combustor[R]. AIAA-2013-166, 2013.
    [7]
    HUANG C, GEJJI R, ANDERSON W E. Effects of fuel spray modeling on combustion instability predictions in a single-element lean direct injection (LDI) gas turbine combustor[R]. AIAA 2015-0188, 2015.
    [8]
    CANDEL S,DUROX D,SCHULLER T,et al. Dynamics of swirling flames[J]. Annual Review of Fluid Mechanics,2014,46(1): 147-173. doi: 10.1146/annurev-fluid-010313-141300
    [9]
    LEE H J, LEE J G, QUAY B, et al. Mechanism of combustion instability due to flame-vortex interactions in a lean premixed gas turbine combustor[R]. AIAA 2013-3726, 2013.
    [10]
    CHEN X L, CULLER W, PELUSO S, et al. Comparison of equivalence ratio transients on combustion instability in single-nozzle and multi-nozzle combustors[R]. ASME Paper GT2018-75427, 2018.
    [11]
    HUANG Cheng, GEJJI R M, ANDERSON W E, et al. Combustion dynamics behavior in a single-element lean direct injection (LDI) gas turbine combustor[R]. AIAA 2014-3433, 2014. .
    [12]
    YOON C, GEJJI R, HUANG Cheng, et al. Computational investigation of combustion instabilities in a laboratory-scale LDI gas turbine engine[R]. AIAA 2013-3648, 2013.
    [13]
    GEJJI R M,HUANG Cheng,FUGGER C,et al. Parametric investigation of combustion instabilities in a single-element lean direct injection combustor[J]. International Journal of Spray and Combustion Dynamics,2019,11: 1-16.
    [14]
    GEJJI R M, HUANG Cheng, YOON C, et al. A parametric study of combustion dynamics in a single-element lean direct injection (LDI) gas turbine combustor[R]. AIAA 2014-0133, 2014.
    [15]
    HAN Xiao,LAERA D,YANG Dong,et al. Flame interactions in a stratified swirl burner: flame stabilization, combustion instabilities and beating oscillations[J]. Combustion and Flame,2020,212: 500-509. doi: 10.1016/j.combustflame.2019.11.020
    [16]
    SONG Heng,LIN Yuzhen,HAN Xiao,et al. The thermoacoustic instability in a stratified swirl burner and its passive control by using a slope confinement[J]. Energy,2020,195: 116956. doi: 10.1016/j.energy.2020.116956
    [17]
    POINSOT T, VEYNANTE D. Theoretical and numerical combustion[M]. 2nd ed. Philadelphia, US: Edwards Inc., 2005.
    [18]
    NICOUD F,DUCROS F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor[J]. Flow, Turbulence and Combustion,1999,62(3): 183-200. doi: 10.1023/A:1009995426001
    [19]
    YUAN L,SHEN C. Large eddy simulation of combustion instability in a tripropellant air heater[J]. Acta Astronautica,2016,129: 59-73. doi: 10.1016/j.actaastro.2016.08.002
    [20]
    PATEL N,KıRTAŞ M,SANKARAN V,et al. Simulation of spray combustion in a lean-direct injection combustor[J]. Proceedings of the Combustion Institute,2007,31(2): 2327-2334. doi: 10.1016/j.proci.2006.07.232
    [21]
    HAN Xingsi,MORGANS A S. Simulation of the flame describing function of a turbulent premixed flame using an open-source LES solver[J]. Combustion and Flame,2015,162(5): 1778-1792. doi: 10.1016/j.combustflame.2014.11.039
    [22]
    HAN Xingsi,LI Jingxuan,MORGANS A S. Prediction of combustion instability limit cycle oscillations by combining flame describing function simulations with a thermoacoustic network model[J]. Combustion and Flame,2015,162(10): 3632-3647. doi: 10.1016/j.combustflame.2015.06.020
    [23]
    ZHANG Zhihao,LIU Xiao,GONG Yaozhen,et al. Investigation on flame characteristics of industrial gas turbine combustor with different mixing uniformities[J]. Fuel,2020,259: 116297. doi: 10.1016/j.fuel.2019.116297
    [24]
    HERMETH S,STAFFELBACH G,GICQUEL L Y M,et al. Bistable swirled flames and influence on flame transfer functions[J]. Combustion and Flame,2014,161(1): 184-196. doi: 10.1016/j.combustflame.2013.07.022
    [25]
    LU Yipin,XIAO Yinli,WU Juan,et al. Nonlinear combustion instability analysis of a bluff body burner based on the flame describing function[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering,2022,236(9): 1751-1765. doi: 10.1177/09544100211044021
    [26]
    JUNIPER M P,SUJITH R I. Sensitivity and nonlinearity of thermoacoustic oscillations[J]. Annual Review of Fluid Mechanics,2018,50: 661-689. doi: 10.1146/annurev-fluid-122316-045125
    [27]
    ZOU Yong,DONNER R V,MARWAN N,et al. Complex network approaches to nonlinear time series analysis[J]. Physics Reports,2019,787: 1-97. doi: 10.1016/j.physrep.2018.10.005
    [28]
    MARWAN N,CARMEN ROMANO M,THIEL M,et al. Recurrence plots for the analysis of complex systems[J]. Physics Reports,2007,438(5/6): 237-329.
    [29]
    HUANG Ying,YANG V. Dynamics and stability of lean-premixed swirl-stabilized combustion[J]. Progress in Energy and Combustion Science,2009,35(4): 293-364. doi: 10.1016/j.pecs.2009.01.002
    [30]
    BERKOOZ G,HOLMES P,LUMLEY J L. The proper orthogonal decomposition in the analysis of turbulent flows[J]. Annual Review of Fluid Mechanics,1993,25: 539-575. doi: 10.1146/annurev.fl.25.010193.002543
    [31]
    张弛,王波,邹鹏飞,等. 同心旋流分层火焰的外激脉动特性统计学分析[J]. 航空动力学报,2017,32(8): 1801-1808. doi: 10.13224/j.cnki.jasp.2017.08.002

    ZHANG Chi,WANG Bo,ZOU Pengfei,et al. Statistical analysis on the forced dynamic of internally-staged-swirling stratified flame[J]. Journal of Aerospace Power,2017,32(8): 1801-1808. (in Chinese) doi: 10.13224/j.cnki.jasp.2017.08.002
    [32]
    SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics,2010,656: 5-28. doi: 10.1017/S0022112010001217
    [33]
    张弛,周宇晨,韩啸,等. 同心旋流分层预混火焰的动力学模态分析[J]. 推进技术,2020,41(3): 595-604. doi: 10.13675/j.cnki.tjjs.190356

    ZHANG Chi,ZHOU Yuchen,HAN Xiao,et al. Dynamic mode analysis on internally-staged-swirling stratified premixed flame[J]. Journal of Propulsion Technology,2020,41(3): 595-604. (in Chinese) doi: 10.13675/j.cnki.tjjs.190356
    [34]
    CHEN K K,TU J H,ROWLEY C W. Variants of dynamic mode decomposition: boundary condition, koopman, and Fourier analyses[J]. Journal of Nonlinear Science,2012,22(6): 887-915. doi: 10.1007/s00332-012-9130-9
    [35]
    童福林,李新亮,段焰辉. 超声速压缩拐角激波/边界层干扰动力学模态分解[J]. 航空学报,2017,38(12): 121376.

    TONG Fulin,LI Xinliang,DUAN Yanhui. Dynamic mode decomposition of shock wave and supersonic boundary layer interactions in a compression ramp[J]. Acta Aeronautica et Astronautica Sinica,2017,38(12): 121376. (in Chinese)
    [36]
    PATWARDHAN S S,NAKOD P,ORSINO S,et al. Numerical investigation of combustion instabilities in a single-element lean direct inject combustor using flamelet based approaches[J]. Journal of Engineering for Gas Turbines and Power,2020,142(9): 091006. doi: 10.1115/1.4047110
    [37]
    POPE S B. Turbulent flows[M]. New York: Cambridge University Press, 2000.
    [38]
    GARCÍA-VILLALBA M,FRÖHLICH J,RODI W. Identification and analysis of coherent structures in the near field of a turbulent unconfined annular swirling jet using large eddy simulation[J]. Physics of Fluids,2006,18(5): 55103.1-55103.17.
    [39]
    SYRED N. A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems[J]. Progress in Energy and Combustion Science,2006,32(2): 93-161. doi: 10.1016/j.pecs.2005.10.002
    [40]
    LIU Yunpeng,LI Jinghua,HAN Qixiang,et al. Study of combustion oscillation mechanism and flame image processing[J]. AIAA Journal,2019,57(2): 824-835. doi: 10.2514/1.J057614
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (60) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return