Volume 39 Issue 5
Jan.  2024
Turn off MathJax
Article Contents
PENG Wei, REN Xiaodong, LI Xuesong, et al. Influence of circumferential position of intake struts on rotor blade excitation and vibration[J]. Journal of Aerospace Power, 2024, 39(5):20220371 doi: 10.13224/j.cnki.jasp.20220371
Citation: PENG Wei, REN Xiaodong, LI Xuesong, et al. Influence of circumferential position of intake struts on rotor blade excitation and vibration[J]. Journal of Aerospace Power, 2024, 39(5):20220371 doi: 10.13224/j.cnki.jasp.20220371

Influence of circumferential position of intake struts on rotor blade excitation and vibration

doi: 10.13224/j.cnki.jasp.20220371
  • Received Date: 2022-05-24
    Available Online: 2023-10-25
  • In order to investigate the influence law and mechanism of the relative circumferential position of the intake struts and downstream blades on the excitation and vibration of the rotor blade, the first 1.5 stage of a heavy-duty gas turbine compressor with intake struts was numerically simulated. Through analysis of the flow field and vibration of the rotor blade, it was found that the circumferential position of the intake struts had little effect on the total pressure ratio and total temperature ratio, but it could obviously change the excitation and vibration level of the rotor blade. When intake strut wakes and guide vane wakes coincided, the two wakes were superimposed and strengthened, resulting in the overall enhancement of excitation and vibration on the rotor blade. The circumferential position of struts obviously changed the combined effect of strut wake and downstream static blade potential flow on rotor blades, which had obvious influence on the unsteady load and global vibration in the middle chord length, but had little influence on the unsteady load near the leading edge and trailing edge. The research results can provide a reference and guidance for the installation of struts.


  • loading
  • [1]
    SRINIVASAN A V. Flutter and resonant vibration characteristics of engine blades[J]. Journal of Engineering for Gas Turbines and Power,1997,119(4): 742-775. doi: 10.1115/1.2817053
    李茂义,袁巍,陆亚钧,等. 进气畸变对跨声速轴流压气机气动影响的机理研究[J]. 航空动力学报,2014,29(2): 374-383.

    LI Maoyi,YUAN Wei,LU Yajun,et al. Mechanism investigation of aerodynamic effect on the inlet flow distortion in a transonic axial-flow compressor[J]. Journal of Aerospace Power,2014,29(2): 374-383. (in Chinese)
    WANG Ziwei,JIANG Xiong,CHEN Ti,et al. Numerical simulation of transonic compressor under circumferential inlet distortion and rotor/stator interference using harmonic balance method[J]. Modern Physics Letters B,2018,32(12/13): 1840021.1-1840021.6.
    BARRECA P,PINELLI L,VANTI F,et al. Aeroelastic investigation of a transonic compressor rotor with multi-row effects[J]. Energy Procedia,2018,148: 58-65. doi: 10.1016/j.egypro.2018.08.019
    SANDERS C,TERSTEGEN M,JESCHKE P,et al. Rotor-stator interactions in a 2.5-stage axial compressor: Part Ⅱ impact of aerodynamic modeling on forced response[J]. Journal of Turbomachinery,2019,141(10): 101008.1-101008.9.
    HALAWA T,GADALA M S. Numerical investigation of compressor blades deformation during stall development into surge[J]. Journal of Propulsion and Power,2017,33(5): 1074-1086. doi: 10.2514/1.B36076
    LIANG Feng,XIE Zhifeng,XIA Aiguo,et al. Aeroelastic simulation of the first 1.5-stage aeroengine fan at rotating stall[J]. Chinese Journal of Aeronautics,2020,33(2): 529-549. doi: 10.1016/j.cja.2019.05.004
    YANG Rongfei,WANG Guoliang,LIU Haixu,et al. Numerical study on the flow mechanism of compressor rotor blade vibration under different inlet probe configurations[J]. International Journal of Aerospace Engineering,2020,2020: 1-12.
    HAN Le,WEI Dasheng,WANG Yanrong,et al. Analysis method of nonsynchronous vibration and influence of tip clearance flow instabilities on nonsynchronous vibration in an axial transonic compressor rotor[J]. Journal of Turbomachinery,2021,143(11): 111014.1-111014.15.
    李其汉,王延荣,王建军. 航空发动机叶片高循环疲劳失效研究[J]. 航空发动机,2003,29(4): 16-18, 41.

    LI Qihan,WANG Yanrong,WANG Jianjun. Investigation of high cycle fatigue failures for the aero engine blades[J]. Aeroengine,2003,29(4): 16-18, 41. (in Chinese)
    MANWARING S R,WISLER D C. Unsteady aerodynamics and gust response in compressors and turbines[J]. Journal of Turbomachinery,1993,115(4): 724-740. doi: 10.1115/1.2929308
    ARMSTRONG E K. Recent blade vibration techniques[J]. Journal of Engineering for Power,1967,89(3): 437-444. doi: 10.1115/1.3616710
    MAILACH R,VOGELER K. Rotor-stator interactions in a four-stage low-speed axial compressor: Part Ⅰ unsteady profile pressures and the effect of clocking[J]. Journal of Turbomachinery,2004,126(4): 507-518. doi: 10.1115/1.1791641
    VAHDATI M,SAYMA A I,IMREGUN M. An integrated nonlinear approach for turbomachinery forced response prediction: Part II case studies[J]. Journal of Fluids and Structures,2000,14(1): 103-125. doi: 10.1006/jfls.1999.0254
    BAUER H J,SCHULZ A,SCHWITZKE M. Aerodynamic excitation of blade vibrations in radial turbines[J]. MTZ Worldwide,2013,74(6): 48-54. doi: 10.1007/s38313-013-0065-9
    CHIANG H W D,TURNER M G. Compressor blade forced response due to downstream vane-strut potential interaction[J]. Journal of Turbomachinery,1996,118(1): 134-142. doi: 10.1115/1.2836594
    JONES M G, BARTON M T, O’BRIEN W F. The use of circumferentially nonuniform stators to attenuate LP compressor rotor-stator-strut aerodynamic and mechanical interactions[C]//Proceedings of ASME International Gas Turbine and Aeroengine Congress and Exhibition. Chicago, US: ASME, 2015: 1-8
    WALKER A D, MARIAH I, HALL C. An experimental, aerodynamic evaluation of design choices for a low-pressure compressor transition duct[C]//Proceedings of ASME Turbo Expo: Turbomachinery Technical Conference and Exposition. Chicago, US: ASME, 2021: 091004.1-091004.14
    CIZMAS P G A,DORNEY D J. The influence of clocking on unsteady forces of compressor and turbine blades[J]. International Journal of Turbo and Jet Engines,2000,17(2): 133-142.
    LI H D,HE L. Blade count and clocking effects on three-bladerow interaction in a transonic turbine[J]. Journal of Turbomachinery,2003,125(4): 632-640. doi: 10.1115/1.1622711
    LEE Yutai,FENG Jinzhang. Potential and viscous interactions for a multi-blade-row compressor[J]. Journal of Turbomachinery,2004,126(4): 464-472. doi: 10.1115/1.1740778
    KEY N L, LAWLESS P B, FLEETER S. An investigation of the flow physics of vane clocking using unsteady flow measurements[C]//Proceedings of ASME Turbo Expo: Power for Land, Sea, and Air. Berlin, Germany: ASME, 2009: 2003-2014.
    SALONTAY J R,KEY N L,FULAYTER R D. Investigation of flow physics of vane clocking effects on rotor resonant response[J]. Journal of Propulsion and Power,2011,27(5): 1001-1007. doi: 10.2514/1.B34081
    SAYMA A I,VAHDATI M,IMREGUN M. An integrated nonlinear approach for turbomachinery forced response prediction: Part I formulation[J]. Journal of Fluids and Structures,2000,14(1): 87-101. doi: 10.1006/jfls.1999.0253
    CHAHINE C,VERSTRAETE T,HE L. A comparative study of coupled and decoupled fan flutter prediction methods under variation of mass ratio and blade stiffness[J]. Journal of Fluids and Structures,2019,85: 110-125. doi: 10.1016/j.jfluidstructs.2018.12.009
    MOFFATT S,HE L. On decoupled and fully-coupled methods for blade forced response prediction[J]. Journal of Fluids and Structures,2005,20(2): 217-234. doi: 10.1016/j.jfluidstructs.2004.10.012
    SUN Hai'ou,REN Aoyu,WANG Yanhua,et al. Deformation and vibration analysis of compressor rotor blades based on fluid-structure coupling[J]. Engineering Failure Analysis,2021,122: 105216.1-105216.18.
    RAUBENHEIMER G. Vibration excitation of axial compressor rotor blades[D]. Cape Town, South Africa: University of Stellenbosch, 2011.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (47) PDF downloads(6) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint