Volume 39 Issue 5
May  2024
Turn off MathJax
Article Contents
WU He, HAO Zihan, YANG Xing, et al. Numerical study on coupling effects of particle deposition and film cooling over flat plate surfaces[J]. Journal of Aerospace Power, 2024, 39(5):20220462 doi: 10.13224/j.cnki.jasp.20220462
Citation: WU He, HAO Zihan, YANG Xing, et al. Numerical study on coupling effects of particle deposition and film cooling over flat plate surfaces[J]. Journal of Aerospace Power, 2024, 39(5):20220462 doi: 10.13224/j.cnki.jasp.20220462

Numerical study on coupling effects of particle deposition and film cooling over flat plate surfaces

doi: 10.13224/j.cnki.jasp.20220462
  • Received Date: 2022-06-27
    Available Online: 2023-10-13
  • Using a particle deposition model and a dynamic mesh technique, the deposition characteristics over a flat plate surface with film cooling under different mass flow ratios and particle sizes were studied. In addition, the effects of particle deposition on film cooling over the flat plate were investigated. Results revealed that at a low particle velocity, the blowing of the coolant acting on the particles made it difficult to deposit in the downstream region of film holes, and an obvious ridged shape of deposits was formed on both sides due to the blocking and entrainment of the cooling jet. However, distribution of the capture efficiency presented a bimodal pattern with the change of particle sizes. At high mass flow ratios, the ridged deposition significantly improved the cooling effectiveness, which was 6.15% higher than that before deposition. Additionally, particle deposition could enhance the lateral spreading of the coolant and improved the laterally-averaged cooling effectiveness. In general, the effects of particle deposition on film cooling performance were determined by both distribution characteristics and thickness of the deposition.

     

  • loading
  • [1]
    DUNN M G. Operation of gas turbine engines in an environment contaminated with volcanic ash[J]. Journal of Turbomachinery,2012,134(5): 051001. doi: 10.1115/1.4006236
    [2]
    KIM J,DUNN M G,BARAN A J,et al. Deposition of volcanic materials in the hot sections of two gas turbine engines[J]. Journal of Engineering for Gas Turbines and Power,1993,115(3): 641-651. doi: 10.1115/1.2906754
    [3]
    杨星,郝子晗,丰镇平. 颗粒污染物在涡轮中的沉积效应[J]. 航空动力,2020(1): 27-31.

    YANG Xing,HAO Zihan,FENG Zhenping. Deposition effects of particles in turbines[J]. Aerospace Power,2020(1): 27-31. (in Chinese)
    [4]
    DRING R P,CASPAR J R,SUO M. Particle trajectories in turbine cascades[J]. Journal of Energy,1979,3(3): 161-166. doi: 10.2514/3.47996
    [5]
    JENSEN J W,SQUIRE S W,BONS J P,et al. Simulated land-based turbine deposits generated in an accelerated deposition facility[J]. Journal of Turbomachinery,2005,127(3): 462-470. doi: 10.1115/1.1860380
    [6]
    CROSBY J M,LEWIS S,BONS J P,et al. Effects of temperature and particle size on deposition in land based turbines[J]. Journal of Engineering for Gas Turbines and Power,2008,130(5): 819-825.
    [7]
    LAWSON S A, THOLE K A, OKITA Y, et al. Simulations of multi-phase particle deposition on a showerhead with staggered film-cooling holes[C]//Proceedings of ASME Turbo Expo. Vancouver, Canada: ASME, 2011: 91-103.
    [8]
    YANG Xing,HAO Zihan,FENG Zhenping. An experimental study on turbine vane Leading-Edge film cooling with deposition[J]. Applied Thermal Engineering,2021,198: 117447. doi: 10.1016/j.applthermaleng.2021.117447
    [9]
    LAWSON S, THOLE K. Simulations of multi-phase particle deposition on endwall film-cooling holes in transverse trenches[C]//Proceedings of ASME Turbo Expo. Vancouver, Canada: ASME, 2011: 79-90.
    [10]
    ALBERT J E,BOGARD D G. Experimental simulation of contaminant deposition on a film-cooled turbine vane pressure side with a trench[J]. Journal of Turbomachinery,2013,135(5): 051008. doi: 10.1115/1.4007821
    [11]
    LYNCH S P,THOLE K A,KOHLI A,et al. Computational predictions of heat transfer and film-cooling for a turbine blade with nonaxisymmetric endwall contouring[J]. Journal of Turbomachinery,2011,133(4): 1.
    [12]
    周君辉,张靖周. 涡轮叶栅内粒子沉积特性的数值研究[J]. 航空学报,2013,34(11): 2492-2499. doi: 10.7527/S1000-6893.2013.0216

    ZHOU Junhui,ZHANG Jingzhou. Numerical investigation on particle deposition characteristic inside turbine cascade[J]. Acta Aeronautica et Astronautica Sinica,2013,34(11): 2492-2499. (in Chinese) doi: 10.7527/S1000-6893.2013.0216
    [13]
    杨晓军,祝佳雄. 涡轮叶栅通道内颗粒物沉积过程的数值模拟[J]. 航空学报,2017,38(5): 120530.

    YANG Xiaojun,ZHU Jiaxiong. Numerical simulation of particle deposition process inside turbine cascade[J]. Acta Aeronautica et Astronautica Sinica,2017,38(5): 120530. (in Chinese)
    [14]
    YANG Xing,HAO Zihan,FENG Zhenping. Particle deposition patterns on high-pressure turbine vanes with aggressive inlet swirl[J]. Chinese Journal of Aeronautics,2022,35(3): 75-89. doi: 10.1016/j.cja.2021.06.005
    [15]
    HAO Z H,YANG X,FENG Z. Unsteady simulations of migration and deposition of fly-ash particles in the first-stage turbine of an aero-engine[J]. The Aeronautical Journal,2021,125(1291): 1566-1586. doi: 10.1017/aer.2021.27
    [16]
    YANG Xing,HAO Zihan,FENG Zhenping. Variations of cooling performance on turbine vanes due to incipient particle deposition[J]. Proceedings of the Institution of Mechanical Engineers: Part A Journal of Power and Energy,2021,235(8): 1832-1846. doi: 10.1177/09576509211010530
    [17]
    杨星,郝子晗,丰镇平. 考虑进口旋流的涡轮静叶流动传热的颗粒物沉积效应[J]. 西安交通大学学报,2021,55(7): 61-70. doi: 10.7652/xjtuxb202107007

    YANG Xing,HAO Zihan,FENG Zhenping. Particle deposition effect of the flow and heat transfer in a turbine vane passage with inlet swirl[J]. Journal of Xi’an Jiaotong University,2021,55(7): 61-70. (in Chinese) doi: 10.7652/xjtuxb202107007
    [18]
    赵静宇. 颗粒在平板气膜冷却壁面沉积机理研究[D]. 西安: 西北工业大学, 2017.

    ZHAO Jingyu. Investigations of particle deposition mechanism on the flat plate wall with film cooling holes[D]. Xi’an: Northwestern Polytechnical University, 2017. (in Chinese)
    [19]
    BRACH R M,DUNN P F. A mathematical model of the impact and adhesion of microsphers[J]. Aerosol Science and Technology,1992,16(1): 51-64. doi: 10.1080/02786829208959537
    [20]
    EL-BATSH H, HASELBACHER H. Numerical investigation of the effect of ash particle deposition on the flow field through turbine cascades[C]//Proceedings of ASME Turbo Expo. Amsterdam: ASME, 2002: 1035-1043.
    [21]
    SINHA A K,BOGARD D G,CRAWFORD M E. Film-cooling effectiveness downstream of a single row of holes with variable density ratio[J]. Journal of Turbomachinery,1991,113(3): 442-449. doi: 10.1115/1.2927894
    [22]
    AI Weiguo,FLETCHER T H. Computational analysis of conjugate heat transfer and particulate deposition on a high pressure turbine vane[J]. Journal of Turbomachinery,2012,134(4): 041020. doi: 10.1115/1.4003716
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (75) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return