留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于IPSOElman神经网络的航空发动机故障诊断

皮骏 黄江博

皮骏, 黄江博. 基于IPSOElman神经网络的航空发动机故障诊断[J]. 航空动力学报, 2017, 32(12): 3031-3038. doi: 10.13224/j.cnki.jasp.2017.12.028
引用本文: 皮骏, 黄江博. 基于IPSOElman神经网络的航空发动机故障诊断[J]. 航空动力学报, 2017, 32(12): 3031-3038. doi: 10.13224/j.cnki.jasp.2017.12.028
Aeroengine fault diagnosis based on IPSOElman neural network[J]. Journal of Aerospace Power, 2017, 32(12): 3031-3038. doi: 10.13224/j.cnki.jasp.2017.12.028
Citation: Aeroengine fault diagnosis based on IPSOElman neural network[J]. Journal of Aerospace Power, 2017, 32(12): 3031-3038. doi: 10.13224/j.cnki.jasp.2017.12.028

基于IPSOElman神经网络的航空发动机故障诊断

doi: 10.13224/j.cnki.jasp.2017.12.028
基金项目: 中央高校基本科研业务费中国民航大学专项资金(3122013H001)

Aeroengine fault diagnosis based on IPSOElman neural network

  • 摘要: 为提高航空发动机故障诊断的精度,提出改进粒子群优化的Elman神经网络对航空发动机故障诊断的方法。利用MIV(平均影响值)对神经网络的输入端自变量进行筛选,降低输入维度;采用改进粒子群优化算法对Elman神经网络的权值和阀值进行优化,并对优化的神经网络进行训练;用训练好的神经网络对航空发动机故障进行诊断并与常规的BP(back propagation)、Elman神经网络、GM(1,n)、SVM (support vector machines)进行对比。仿真结果表明:IPSOElman(improved particle swarm optimization Elman neural network)神经网络的诊断误差在不同数量训练样本时都小于其他方法,并且在参选故障诊断的性能参数不同时,其诊断误差相近,展现出较强的适应能力。

     

  • [1] 曲建岭,唐昌盛,肖辉雄.人工神经网络融合诊断航空发动机气路故障[J].航空动力学报,2008,23(11):2124-2127.QU Jianling,TANG Changsheng,XIAO Huixiong.Integrated diagnosis of aeroegines’gas path faults using artificial neural network[J].Journal of Aerospace Power,2008,23(11):2124-2127.(in Chinese)
    [2] 陈恬,孙建国.粗糙集与神经网络在航空发动机气路故障诊断中的应用[J].航空动力学报,2006,21(1):207-212.CHEN Tian,SUN Jianguo.Aeroegine gas path fault disgnoeie using rough sets and nerual networks[J].Journal of Aerospace Power,2006,21(1):207-212.(in Chinese)
    [3] 丁刚,徐敏强,侯立国.基于过程神经网络的航空发动机排气温度预测[J].航空动力学报,2009,24(5):1035-1039.DING Gang,XU Minqiang,HOU Liguo.Prediction of aeroengine exhaust gas temperature using processneural network[J].Journal of Aerospace Power,2009,24(5):1035-1039.(in Chinese)
    [4] VOLPONI A J,DE POLD H,GANGULI R.The use of kalman filter and neural network methodologies in gas turbine performance diagnostics:a comparative study[J].Journal of Engineering for Gas Turbines and Power,2003,125(4):917-924.
    [5] LEE S M,CHOI W J,ROH T S.A study on separate learning algorithm using support vector machine for defect diagnostics of gas turbine engine[J].Journal of Mechanical Science and Technology,2008,22(12):2489-2497.
    [6] CHANG Xiaodong,HUANG Jinquan,LU Feng.Robust inflight sensor fault diagnostics for aircraft engine based on sliding mode observers[J].Sensors,2017,17(4):835.1-835.15.
    [7] JOESPH C G,GARY D R.专家系统原理与编程[M].印鉴,刘星成,汤庸,等译.北京:科学出版社,2007.
    [8] 温熙森.模式识别与状态监控[M].北京:科学出版社,2007.
    [9] 肖建华.智能模式识别方法[M].广州:华南理工大学出版社,2007.
    [10] 钟诗胜,李洋.基于小波过程神经网络的飞机发动机状态监视[J].航空学报,2007,28(1):68.71.ZHONG Shisheng,LI Yang.Condition monitoring of aeroengine based on wavelet process neural networks[J].Acta Aeronautica et Astronautica Sinica,2007,28(1):68-71.(in Chinese)
    [11] 单晓明,宋云峰,黄金泉,等.基于神经网络和模糊逻辑的航空发动机监视[J].航空动力学报,2009,24(10):2356-2361.SHAN Xiaoming,SONG Yunfeng,HUANG Jinquan,et al.Condition monitoring of aeroengine based on neural network and fuzzy logic[J].Journal of Aerospace Power,2009,24(10):2356-2361.(in Chinese)
    [12] 陈果.用结构自适应神经网络预测航空发动机性能趋势[J].航空学报,2007,28(3):535-539.CHEN Guo.Forecasting engine performance trend by using structure selfadaptive neural network[J].Acta Aeronautica et Astronautica sinica,2007,28(3):535-539.(in Chinese)
    [13] 傅荟璇,赵红,王宇超,等.MATLAB神经网络应用设计[M].北京:机械工业出版社,2010.
    [14] 史峰,王小川,郁磊,等MATLAB神经网络30个案列分析[M].北京:北京航空航天大学出版社,2010.
    [15] 李东年,周以齐.采用改进粒子群优化粒子滤波的三维人手跟踪[J].光学精密工程,2014,22(10):2870-2878.LI Dongnian,ZHOU Yiqi.Three dimensional hand tracking by improved particle swarm optimized particle filter[J].Optics and Precision Engineering,2014,22(10):2870-2878.(in Chinese)
    [16] LING S H,IU H,LEUNG F H,et al.Improved hybrid particle swarm optimized wavelet neural network for modeling the development of fluid dispensing for electronic packaging[J].IEEE Transactions on Industrial Electronics,2008,55(9):3447-3460.
    [17] 范作民,孙春林,白杰.航空发动机故障诊断导论[M].北京:科学出版社,2004.
    [18] 陈法法,汤宝平,黄庆卿.免疫遗传优化Elman神经网络的旋转机械故障诊断[J].重庆大学学报,2012,35(5):7-13.CHEN Fafa,TANG Baoping,HUANG Qingqing.Ratating machinery fault diagnosis based on Elman neural network optimized by immune genetic algorithm[J].Journal of Chongqing University,2012,35(5):7-13.(in Chinese)
  • 加载中
计量
  • 文章访问数:  843
  • HTML浏览量:  0
  • PDF量:  411
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-03
  • 刊出日期:  2017-12-28

目录

    /

    返回文章
    返回