留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

当量比对铝粉/空气旋转爆轰发动机流场影响的数值模拟

李世全 杨帆 王宇辉 王健平 张国庆

李世全, 杨帆, 王宇辉, 等. 当量比对铝粉/空气旋转爆轰发动机流场影响的数值模拟[J]. 航空动力学报, 2024, 39(5):20210560 doi: 10.13224/j.cnki.jasp.20210560
引用本文: 李世全, 杨帆, 王宇辉, 等. 当量比对铝粉/空气旋转爆轰发动机流场影响的数值模拟[J]. 航空动力学报, 2024, 39(5):20210560 doi: 10.13224/j.cnki.jasp.20210560
LI Shiquan, YANG Fan, WANG Yuhui, et al. Numerical simulations on effect of equivalence ratio on flow field in aluminum power/air rotating detonation engines[J]. Journal of Aerospace Power, 2024, 39(5):20210560 doi: 10.13224/j.cnki.jasp.20210560
Citation: LI Shiquan, YANG Fan, WANG Yuhui, et al. Numerical simulations on effect of equivalence ratio on flow field in aluminum power/air rotating detonation engines[J]. Journal of Aerospace Power, 2024, 39(5):20210560 doi: 10.13224/j.cnki.jasp.20210560

当量比对铝粉/空气旋转爆轰发动机流场影响的数值模拟

doi: 10.13224/j.cnki.jasp.20210560
基金项目: 某装备发展部、装备预先研究领域基金(61407200113); 国家自然科学基金(91741202, 52076003);中央高校基本科研业务费专项资金(buctrc201913)
详细信息
    作者简介:

    李世全(1990-),男,硕士生,主要从事旋转爆轰发动机研究。E-mail:lishiquan_job@163.com

    通讯作者:

    王宇辉(1986-),男,副教授,博士,主要从事旋转爆轰发动机研究。E-mail:aowuki@163.com

  • 中图分类号: V231.2

Numerical simulations on effect of equivalence ratio on flow field in aluminum power/air rotating detonation engines

  • 摘要:

    以铝粉为燃料,空气为氧化剂,通过一步反应机理,对不同当量比下气固两相旋转爆轰发动机的流场进行二维数值模拟研究。结果表明:由于颗粒注入速度和空气注入速度存在差异,导致反应物区中的颗粒三角区和空气三角区不完全重叠,使得当量比从0.6增加到1.4时,爆轰波前的平均局部当量比从0.929增加到2.093,爆轰波速度从2070 m/s降低到1690 m/s,爆轰波压力从5.67 MPa降低到4.87 MPa。燃烧室内基本的流场与气相旋转爆轰发动机相似,但气固两相之间的相互作用使得颗粒呈现出特有的分布特性,包括2个颗粒群和4条颗粒带以及它们之间的间隙。

     

  • 图 1  二维计算模型图

    Figure 1.  Diagram of two-dimensional calculation model

    图 2  Er=1.0 时稳定状态下不同网格尺寸的压力云图

    Figure 2.  Pressure contours for different cell sizes in stable state at Er=1.0

    图 3  Er=1.0 时的平均局部当量比示意图

    Figure 3.  Schematic diagram of average local equivalence ratio at Er=1.0

    图 4  不同当量比下的压力和氧气质量分数云图

    Figure 4.  Contours of pressure and mass fraction of O2 at different equivalence ratios

    图 5  Er=1.0 时气固两相RDE中的颗粒分布和流场示意图

    Figure 5.  Schematic diagram of flow field and particle distribution for gas-solid two phase RDE at Er=1.0

    图 6  不同当量比下颗粒密度和DPM质量浓度云图

    Figure 6.  Contours of particle density and DPM mass concentration at different equivalence ratios

    图 7  Er=1.0 时的气固两相RDE典型颗粒分布示意图

    Figure 7.  Schematic diagram of typical particle distribution for gas-solid two phase RDE at Er=1.0

    图 8  Er=1.0 时入口处局部当量比和DPM质量浓度云图

    Figure 8.  Contours of local equivalence ratio and DPM mass concentration near the inlet at Er=1.0

    图 9  Er=1.0 时爆轰波后的颗粒密度不均匀示意图

    Figure 9.  Schematic diagram of uneven of particle density after RDW at Er=1.0

    图 10  Er=1.0 时爆轰波后注入的颗粒爆燃示意图

    Figure 10.  Schematic diagram of deflagration of particle injected after RDW at Er=1.0

    图 11  Er=1.4 时不同时刻爆轰波后的爆燃颗粒的轨迹示意图和气体沿x方向速度图

    Figure 11.  Schematic diagram of trajectories of deflagrated particles after RDWs and x velocity diagram of gas at Er=1.4

    图 12  燃烧室入口处空气沿y向速度分布图(y=0)

    Figure 12.  Profile of y velocity of air at combustor inlet (y=0)

    图 13  爆轰波后堆积颗粒的轨迹示意图

    Figure 13.  Schematic diagram of trajectory of accumulated particle after RDW

    表  1  不同当量比下的铝颗粒的质量流量

    Table  1.   Mass flow rate of aluminum particle at different equivalence ratios

    当量比铝颗粒质量流量/(kg/s)
    0.67.86
    0.810.49
    1.013.11
    1.215.73
    1.418.35
    下载: 导出CSV

    表  2  燃烧反应计算参数[35]

    Table  2.   Parameters of combustion reaction used for calculation[35]

    计算参数 数值
    铝的密度/(kg/m3 2719
    铝的燃烧热/107 (J/kg) 3.1
    铝的比定压热容/(J/(kg·K)) 871
    表面反应指前因子/(kg/(m2·s)) 200
    表面反应活化能/107 (J/kmol) 9.55
    有限速率质量扩散常数/10−12 (kg/(m2·s·Pa)) 5.0
    下载: 导出CSV

    表  3  Er=1.0时不同网格尺寸下的爆轰波参数

    Table  3.   Parameters of RDW for different cell sizes at Er=1.0

    网格尺寸/
    mm
    网格数量 爆轰波速度/
    (m/s)
    爆轰波高度/
    mm
    0.40×0.40 46875 1710 8.1
    0.30×0.3125 80000 1760 9.5
    0.25×0.25 120000 1790 9.8
    0.20×0.20 187500 1 810 10.2
    下载: 导出CSV

    表  4  不同当量比下的爆轰波参数

    Table  4.   Parameters of RDW at different equivalence ratios

    Er ALEr 爆轰波压力/
    MPa
    爆轰波速度/
    (m/s)
    爆轰波高度/
    mm
    0.6 0.929 5.67 2060 9.3
    0.8 1.196 5.37 1 900 9.8
    1.0 1.510 5.03 1 810 10.2
    1.2 1.793 5.02 1740 10.0
    1.4 2.093 4.87 1690 10.1
    下载: 导出CSV

    表  5  不同当量比下颗粒三角区和空气三角区下游边界的斜率

    Table  5.   Slope of downstream boundary for trigonal zone of air and particle at different equivalence ratios

    Er 0.6 0.8 1.0 1.2 1.4
    tan $\alpha $ 0.113 0.113 0.105 0.109 0.115
    tan $\beta $ 0.156 0.155 0.169 0.167 0.173
    下载: 导出CSV
  • [1] FALEMPIN F,LE NAOUR B. R&T effort on pulsed and continuous detonation wave engines[R]. AIAA 2009-7284,2009.
    [2] 王兵,谢峤峰,闻浩诚,等. 爆震发动机研究进展[J]. 推进技术,2021,42(4): 721-737,716. WANG Bing,XIE Qiaofeng,WEN Haocheng,et al. Research progress of detonation engines[J]. Journal of Propulsion Technology,2021,42(4): 721-737,716. (in Chinese

    WANG Bing, XIE Qiaofeng, WEN Haocheng, et al. Research progress of detonation engines[J]. Journal of Propulsion Technology, 2021, 42(4): 721-737, 716. (in Chinese)
    [3] VOITSEKHOVSKII B V. Stationary spin detonation[J]. Journal of Applied Mechanics and Technical Physics,1960,3: 157-164.
    [4] FOTIA M,KAEMMING T A,HOKE J,et al. Study of the experimental performance of a rotating detonation engine with nozzled exhaust flow[R]. AIAA 2015-0631,2015.
    [5] FOTIA M,SCHAUER F,HOKE J. Experimental study of performance scaling in rotating detonation engines operated on hydrogen and gaseous hydrocarbon fuel[R]. AIAA 2015-3626,2015.
    [6] SONWANE C,CLAFLIN S,LYNCH E,et al. Recent advances in power cycles using rotating detonation engines with subcritical and supercritical CO2[R]. Pittsburgh,US: The 4th International Symposium-Supercritical CO2 Power Cycles,2014.
    [7] CLAFLIN S. Recent progress in continuous detonation engine development at pratt & whitney rocketdyne[R]. Tsukuba,Japan: International Workshop on Detonation for Propulsion,2012.
    [8] ANDERSON W,HEISTER S D,HARTSFIELD C. Experimental study of a hypergolically ignited liquid bipropellant rotating detonation rocket engine[R]. AIAA 2019-0474,2019.
    [9] ZHU Yiyuan,WANG Ke,WANG Zhicheng,et al. Study on the performance of a rotating detonation chamber with different aerospike nozzles[J]. Aerospace Science and Technology,2020,107: 106338. doi: 10.1016/j.ast.2020.106338
    [10] 刘倩,郑洪涛,李智明,等. 连续旋转爆轰燃烧室的性能[J]. 航空动力学报,2015,30(6): 1328-1336. LIU Qian,ZHENG Hongtao,LI Zhiming,et al. Performance of continuously rotating detonation combustor[J]. Journal of Aerospace Power,2015,30(6): 1328-1336. (in Chinese

    LIU Qian, ZHENG Hongtao, LI Zhiming, et al. Performance of continuously rotating detonation combustor[J]. Journal of Aerospace Power, 2015, 30(6): 1328-1336. (in Chinese)
    [11] 徐雪阳,卓长飞,武晓松,等. 非预混喷注对旋转爆震发动机影响的数值研究[J]. 航空学报,2016,37(4): 1184-1195. XU Xueyang,ZHUO Changfei,WU Xiaosong,et al. Numerical simulation of injection schemes with separate supply of fuel and oxidizer effects on rotating detonation engine[J]. Acta Aeronautica et Astronautica Sinica,2016,37(4): 1184-1195. (in Chinese

    XU Xueyang, ZHUO Changfei, WU Xiaosong, et al. Numerical simulation of injection schemes with separate supply of fuel and oxidizer effects on rotating detonation engine[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4): 1184-1195. (in Chinese)
    [12] LIN Wei,ZHOU Jin,LIU Shijie,et al. Experimental study on propagation mode of H2/Air continuously rotating detonation wave[J]. International Journal of Hydrogen Energy,2015,40(4): 1980-1993. doi: 10.1016/j.ijhydene.2014.11.119
    [13] FUGGER C A,LOPEZ J G,REIN K D,et al. The dynamics of a non-premixed rotating detonation engine from time-resolved temperature measurements[J]. Proceedings of the Combustion Institute,2021,38(3): 3787-3795. doi: 10.1016/j.proci.2020.06.373
    [14] 赵明皓,王可,王致程,等. 燃烧室构型对旋转爆震波传播特性的影响[J]. 航空学报,2022,43(5): 243-254. ZHAO Minghao,WANG Ke,WANG Zhicheng,et al. Effect of combustor configurations on propagation characteristics of rotating detonation waves[J]. Acta Aeronautica et Astronautica Sinica,2022,43(5): 243-254. (in Chinese

    ZHAO Minghao, WANG Ke, WANG Zhicheng, et al. Effect of combustor configurations on propagation characteristics of rotating detonation waves[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 243-254. (in Chinese)
    [15] WIGGINS R,GAETANO A,PRITSCHAU T,et al. Rotating detonations through hydrogen-air and ethylene-air mixtures in hollow and flow-through combustors[R]. AIAA 2021-0420,2021.
    [16] YAO Songbai,WANG Jianping. Multiple ignitions and the stability of rotating detonation waves[J]. Applied Thermal Engineering,2016,108: 927-936. doi: 10.1016/j.applthermaleng.2016.07.166
    [17] WANG Chao,LIU Weidong,LIU Shijie,et al. Experimental investigation on detonation combustion patterns of hydrogen/vitiated air within annular combustor[J]. Experimental Thermal and Fluid Science,2015,66: 269-278. doi: 10.1016/j.expthermflusci.2015.02.024
    [18] WANG Yuhui,WANG Jianping. Rotating detonation instabilities in hydrogen-oxygen mixture[J]. Applied Mechanics and Materials,2015,709: 56-62.
    [19] ANAND V,ST GEORGE A,DRISCOLL R,et al. Longitudinal pulsed detonation instability in a rotating detonation combustor[J]. Experimental Thermal and Fluid Science,2016,77: 212-225. doi: 10.1016/j.expthermflusci.2016.04.025
    [20] HUMBLE J,HEISTER S D. Heterogeneous detonation physics as applied to high pressure rotating detonation engines[R]. AIAA 2021-1027,2021.
    [21] DUNN I B,MALIK V,AHMED K A,et al. Evidence of carbon driven detonation waves within a rotating detonation engine[R]. AIAA 2021-1026,2021.
    [22] 李宝星,许桂阳,舒慧明,等. 燃烧室轴向和周向长度对气液两相旋转爆轰特性的影响[J]. 航空动力学报,2020,35(8): 1601-1611. LI Baoxing,XU Guiyang,SHU Huiming,et al. Influence of axial and circumferential lengths of combustion chamber on gas-liquid two-phase rotating detonation characteristics[J]. Journal of Aerospace Power,2020,35(8): 1601-1611. (in Chinese

    LI Baoxing, XU Guiyang, SHU Huiming, et al. Influence of axial and circumferential lengths of combustion chamber on gas-liquid two-phase rotating detonation characteristics[J]. Journal of Aerospace Power, 2020, 35(8): 1601-1611. (in Chinese)
    [23] BRZUSTOWSKI T A,GLASSMAN I. Spectroscopic investigation of metal combustion[J]. Heterogeneous Combustion,1964,15: 41-73.
    [24] BECKSTEAD M W. A summary of aluminum combustion[R]. Rhode-Saint-Genèse,Belgium: Internal Aerodynamics in Solid Rocket Propulsion,2002.
    [25] BECKSTEAD M W,LIANG Y,PUDDUPPAKKAM K V. Numerical simulation of single aluminum particle combustion (review)[J]. Combustion,Explosion and Shock Waves,2005,41(6): 622-638. doi: 10.1007/s10573-005-0077-0
    [26] BAZYN T,KRIER H,GLUMAC N. Evidence for the transition from the diffusion-limit in aluminum particle combustion[J]. Proceedings of the Combustion Institute,2007,31(2): 2021-2028. doi: 10.1016/j.proci.2006.07.161
    [27] HISHIDA M,FUJIWARA T,WOLANSKI P. Fundamentals of rotating detonations[J]. Shock Waves,2009,19(1): 1-10. doi: 10.1007/s00193-008-0178-2
    [28] WANG Yuhui. Rotating detonation in a combustor of trapezoidal cross section for the hydrogen-air mixture[J]. International Journal of Hydrogen Energy,2016,41(12): 5605-5616. doi: 10.1016/j.ijhydene.2016.02.028
    [29] ZHANG Fan,GERRARD K,RIPLEY R C. Reaction mechanism of aluminum-particle-air detonation[J]. Journal of Propulsion and Power,2009,25(4): 845-858. doi: 10.2514/1.41707
    [30] BAUM M M,STREET P J. Predicting the combustion behaviour of coal particles[J]. Combustion Science and Technology,1971,3(5): 231-243. doi: 10.1080/00102207108952290
    [31] HOSODA H,HAYASHI A K,YAMADA E. Numerical analysis on combustion characteristics of nano aluiminum particle-oxygen two-phase detonation[J]. Science and Technology of Energetic Materials,2013,74(1/2): 34-40.
    [32] TENG Honghui,JIANG Zonglin. Effects of different product phases in aluminum dust detonation modeling[J]. Science China Physics,Mechanics and Astronomy,2013,56(11): 2178-2185. doi: 10.1007/s11433-013-5268-1
    [33] TANGUAY V,GOROSHIN S,HIGGINS A J,et al. Aluminum particle combustion in high-speed detonation products[J]. Combustion Science and Technology,2009,181(4): 670-693. doi: 10.1080/00102200802643430
    [34] LYNCH P,KRIER H,GLUMAC N. A correlation for burn time of aluminum particles in the transition regime[J]. Proceedings of the Combustion Institute,2009,32(2): 1887-1893. doi: 10.1016/j.proci.2008.06.205
    [35] TAO H. Shock wave ignition of aluminum particles[J]. Journal De Physique Ⅳ (Proceedings),2002,12(7): 105-112. doi: 10.1051/jp4:20020272
    [36] SALVADORI M,DUNN I B,SOSA J,et al. Numerical investigation of shock-induced combustion of coal-H2-air mixtures in a unwrapped non-premixed detonation channel[R]. AIAA 2020-2159,2020.
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  67
  • HTML浏览量:  44
  • PDF量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-01
  • 网络出版日期:  2023-12-26

目录

    /

    返回文章
    返回