留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

叶片丢失后停车过程转子瞬态动力响应分析

刘畅 徐自力 霍施宇 慕琴琴 徐健

刘畅, 徐自力, 霍施宇, 等. 叶片丢失后停车过程转子瞬态动力响应分析[J]. 航空动力学报, 2024, 39(5):20210571 doi: 10.13224/j.cnki.jasp.20210571
引用本文: 刘畅, 徐自力, 霍施宇, 等. 叶片丢失后停车过程转子瞬态动力响应分析[J]. 航空动力学报, 2024, 39(5):20210571 doi: 10.13224/j.cnki.jasp.20210571
LIU Chang, XU Zili, HUO Shiyu, et al. Transient dynamic response analysis of rotor during shutdown after blade loss[J]. Journal of Aerospace Power, 2024, 39(5):20210571 doi: 10.13224/j.cnki.jasp.20210571
Citation: LIU Chang, XU Zili, HUO Shiyu, et al. Transient dynamic response analysis of rotor during shutdown after blade loss[J]. Journal of Aerospace Power, 2024, 39(5):20210571 doi: 10.13224/j.cnki.jasp.20210571

叶片丢失后停车过程转子瞬态动力响应分析

doi: 10.13224/j.cnki.jasp.20210571
详细信息
    作者简介:

    刘畅(1998-),男,硕士生,主要从事转子动力学研究

    通讯作者:

    徐自力(1967-),男,教授,博士,主要从事透平机械结构强度与振动研究。E-mail:zlxu@mail.xjtu.edu.cn

  • 中图分类号: V231.9

Transient dynamic response analysis of rotor during shutdown after blade loss

  • 摘要:

    为揭示叶片丢失后转子系统停车过程动力响应特征,研究了叶片丢失后叶盘转动惯量非对称性及停车过程变转速特征,建立了非对称变速转子瞬态动力响应分析模型,对叶片丢失后转子系统停车过程瞬态响应进行了分析。结果表明:叶片丢失瞬间及转子过共振区,转子系统的瞬态振动响应加剧,并伴有横向固有振动。当转动惯量非对称比例为0.2时,转子系统响应峰值与不考虑轮盘非对称性相差58%。因此,对于大质量叶片或多叶片丢失情况,轮盘转动惯量非对称性就不能忽略,表明所建转子动力学模型可以有效分析大非对称转子停车过程复杂振动响应特征。

     

  • 图 1  叶片丢失事件转速变化

    Figure 1.  Speed change of blade-out

    图 2  停车过程激励载荷特征

    Figure 2.  Excitation load characteristics during shutdown

    图 3  典型高涵道比涡扇发动机转子

    Figure 3.  Typical high bypass ratio turbofan engine rotor

    图 4  叶片丢失后非对称叶盘

    Figure 4.  Asymmetric disk after blade-out

    图 5  多支撑悬臂转子系统

    Figure 5.  Multi-support cantilever rotor

    图 6  叶片丢失后转子停车过程瞬态响应

    Figure 6.  Transient response of rotor during shutdown after blade loss

    图 7  叶片丢失后转子停车过程时频域响应

    Figure 7.  Time-frequency domain response of rotor after blade loss

    图 8  陀螺效应对转子瞬态响应影响

    Figure 8.  Influence of the gyro effect on the transient response of the rotor

    图 9  不同加速度下转子时域瞬态响应

    Figure 9.  Time-domain transient response of rotor under different accelerations

    图 10  不同加速度下转子时频域响应

    Figure 10.  Time-frequency response of rotor under different acceleration

    图 11  叶片丢失等效圆盘缺失

    Figure 11.  Blade-loss equivalent to missing disks

    图 12  不同非对称比例下转子时域瞬态响应

    Figure 12.  Time-domain transient response of rotor under different asymmetric ratios

    表  1  多支撑悬臂转子结构参数

    Table  1.   Multi-support cantilever rotor structure parameters

    参数 数值
    叶盘质量(Md)/kg 120
    叶盘极转动惯量(Jp)/(kg·m2 8
    轴段长度(l1, l2, l3)/mm 300,300,1400
    轴段外径(D1, D2, D3)/mm 160,160,80
    轴段内径(d1, d2, d3)/mm 140,140,70
    支撑刚度(K1, K2, K3)/107 (N/m) 4,4,4
    支撑阻尼(C1, C2, C3)/(N·s/m) 25,25,25
    弹性模量E/GPa 210
    泊松比μ 0.3
    密度ρ/(kg/m3 7850
    阻尼比γ 0.02
    不平衡量/(kg·m) 0.01
    下载: 导出CSV

    表  2  不同加速度下转子瞬态响应峰值

    Table  2.   Transient response peak value of rotor under different accelerations

    参数 加速度/(rad/s2
    −75 −188 −377
    最大响应峰值/mm 1.53 1.24 1
    最大响应峰值对应转速/(r/min) 2534 2447 2313
    下载: 导出CSV

    表  3  不同非对称比例下转子瞬态响应结果

    Table  3.   Transient response results of rotor under different asymmetric ratios

    非对称比例冲击响应峰值/mm共振响应峰值/mm
    00.391.18
    0.050.401.24
    0.10.411.37
    0.20.431.87
    下载: 导出CSV
  • [1] COSME N,CHEVROLET D,BONINI J,et al. Prediction of engine loads and damages due to fan blade off event[R]. AIAA-2002-1666,2002.
    [2] 陈伟,刘璐璐,宣海军,等. 突加高能载荷作用下航空发动机结构动态响应及安全性综述[J]. 推进技术,2020,41(9): 2099-2119. CHEN Wei,LIU Lulu,XUAN Haijun,et al. Review on dynamic response and safety of engine structure under sudden high energy load[J]. Journal of Propulsion Technology,2020,41(9): 2099-2119. (in Chinese

    CHEN Wei, LIU Lulu, XUAN Haijun, et al. Review on dynamic response and safety of engine structure under sudden high energy load[J]. Journal of Propulsion Technology, 2020, 41(9): 2099-2119. (in Chinese)
    [3] Federal Aviation Regulations. 14 CFR part 33 airworthiness standards: aircraft engines[S]. Washington DC: Federal Aviation Administration,1993: 81-99.
    [4] 中国民用航空总局. CCAR-33-R2 航空发动机适航规定[S]. 北京: 中国民用航空总局,2011: 38-78.
    [5] 马艳红,梁智超,王桂华,等. 航空发动机叶片丢失问题研究综述[J]. 航空动力学报,2016,31(3): 513-526. MA Yanhong,LIANG Zhichao,WANG Guihua,et al. Review on the blade loss of aero-engine[J]. Journal of Aerospace Power,2016,31(3): 513-526. (in Chinese

    MA Yanhong, LIANG Zhichao, WANG Guihua, et al. Review on the blade loss of aero-engine[J]. Journal of Aerospace Power, 2016, 31(3): 513-526. (in Chinese)
    [6] YU Pingchao,ZHANG Dayi,MA Yanhong,et al. Dynamic modeling and vibration characteristics analysis of the aero-engine dual-rotor system with Fan blade out[J]. Mechanical Systems and Signal Processing,2018,106: 158-175. doi: 10.1016/j.ymssp.2017.12.012
    [7] LAWRENCE C,CARNEY K,GALLARDO V. Simulation of aircraft engine blade-out structural dynamics. revised[R]. NASA/TM2001-210957/REV1,2001.
    [8] 王宗勇,龚斌,闻邦椿. 质量及激励幅值突变转子系统动力学研究[J]. 振动与冲击,2008,27(8): 48-51,176. WANG Zongyong,GONG Bin,WEN Bangchun. Research on rotor dynamics with sudden change of mass and excitation magnitude[J]. Journal of Vibration and Shock,2008,27(8): 48-51,176. (in Chinese

    WANG Zongyong, GONG Bin, WEN Bangchun. Research on rotor dynamics with sudden change of mass and excitation magnitude[J]. Journal of Vibration and Shock, 2008, 27(8): 48-51, 176. (in Chinese)
    [9] KALINOWSKI P,BARGEN O,LIEBICH R. Vibrations of rotating machinery due to sudden mass loss[C]//the 8th IFToMM International Conference on Rotating Machinery. Seoul: IFToMM,2010: 584-590.
    [10] SINHA S K. Rotordynamic analysis of asymmetric turbofan rotor due to fan blade-loss event with contact-impact rub loads[J]. Journal of Sound and Vibration,2013,332(9): 2253-2283. doi: 10.1016/j.jsv.2012.11.033
    [11] 侯理臻,廖明夫,王卫国,等. 叶片飞脱下转子动力学响应实验[J]. 航空动力学报,2019,34(5): 1010-1019. HOU Lizhen,LIAO Mingfu,WANG Weiguo,et al. Experiment of rotor dynamics under fan blade off[J]. Journal of Aerospace Power,2019,34(5): 1010-1019. (in Chinese

    HOU Lizhen, LIAO Mingfu, WANG Weiguo, et al. Experiment of rotor dynamics under fan blade off[J]. Journal of Aerospace Power, 2019, 34(5): 1010-1019. (in Chinese)
    [12] WANG Cun,ZHANG Dayi,MA Yanhong,et al. Theoretical and experimental investigation on the sudden unbalance and rub-impact in rotor system caused by blade off[J]. Mechanical Systems and Signal Processing,2016,76/77: 111-135. doi: 10.1016/j.ymssp.2016.02.054
    [13] 王美令,温保岗,韩清凯. 弹支-刚性转子系统过共振瞬态响应特性研究[J]. 动力学与控制学报,2018,16(6): 533-538. WANG Meiling,WEN Baogang,HAN Qingkai. Transient response characteristic of a rigid rotor system with flexible supports across resonance[J]. Journal of Dynamics and Control,2018,16(6): 533-538. (in Chinese

    WANG Meiling, WEN Baogang, HAN Qingkai. Transient response characteristic of a rigid rotor system with flexible supports across resonance[J]. Journal of Dynamics and Control, 2018, 16(6): 533-538. (in Chinese)
    [14] 李超,刘棣,马艳红,等. 叶片飞失转子动力特性及支承结构安全性设计[J]. 航空动力学报,2020,35(11): 2263-2274. LI Chao,LIU Di,MA Yanhong,et al. Dynamic characteristics of rotor and safety design of support structure with fan blade off[J]. Journal of Aerospace Power,2020,35(11): 2263-2274. (in Chinese

    LI Chao, LIU Di, MA Yanhong, et al. Dynamic characteristics of rotor and safety design of support structure with fan blade off[J]. Journal of Aerospace Power, 2020, 35(11): 2263-2274. (in Chinese)
    [15] LIU Di,LI Chao,MA Yanhong,et al. Stability and frequency analysis for inertia asymmetry rotor based on hill method[C]//International Conference on Maintenance Engineering. Cham: Springer,2021: 773-783.
    [16] WANG Nanfei,LIU Chao,JIANG Dongxiang. Prediction of transient vibration response of dual-rotor-blade-casing system with blade off[J]. Proceedings of the Institution of Mechanical Engineers,Part G: Journal of Aerospace Engineering,2019,233(14): 5164-5176.
    [17] WENG Y,ZHENG L. An explicit-implicit time integration approach for finite element evaluation of engine load following an FBO event[R]. ASME Paper GT2017-64636,2017.
    [18] 廖明夫. 航空发动机转子动力学[M]. 西安: 西北工业大学出版社,2015.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  52
  • HTML浏览量:  31
  • PDF量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-10
  • 网络出版日期:  2023-12-28

目录

    /

    返回文章
    返回