留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大型结冰风洞热气供气防除冰试验技术

赵照 熊建军 冉林 易贤

赵照, 熊建军, 冉林, 等. 大型结冰风洞热气供气防除冰试验技术[J]. 航空动力学报, 2024, 39(5):20210582 doi: 10.13224/j.cnki.jasp.20210582
引用本文: 赵照, 熊建军, 冉林, 等. 大型结冰风洞热气供气防除冰试验技术[J]. 航空动力学报, 2024, 39(5):20210582 doi: 10.13224/j.cnki.jasp.20210582
ZHAO Zhao, XIONG Jianjun, RAN Lin, et al. Hot air supply anti/de-icing test technology in large-scale icing wind tunnel[J]. Journal of Aerospace Power, 2024, 39(5):20210582 doi: 10.13224/j.cnki.jasp.20210582
Citation: ZHAO Zhao, XIONG Jianjun, RAN Lin, et al. Hot air supply anti/de-icing test technology in large-scale icing wind tunnel[J]. Journal of Aerospace Power, 2024, 39(5):20210582 doi: 10.13224/j.cnki.jasp.20210582

大型结冰风洞热气供气防除冰试验技术

doi: 10.13224/j.cnki.jasp.20210582
基金项目: 国家科技重大专项(J2019-Ⅲ-0010-0054)
详细信息
    作者简介:

    赵照(1993-),男,工程师,硕士,主要从事风洞试验技术研究。E-mail:zhaozhao12390@126.com

    通讯作者:

    易贤(1977-),男,研究员,博士,主要从事结冰与防除冰研究。E-mail:yixian_2000@163.com

  • 中图分类号: V216

Hot air supply anti/de-icing test technology in large-scale icing wind tunnel

  • 摘要:

    在结冰风洞建立热气供气防除冰试验系统是开展热气防除冰试验的主要手段,为满足我国一系列国产飞机防除冰系统设计与结冰适航审定需求,中国空气动力研究与发展中心依托3 m×2 m大型结冰风洞开展了热气供气防除冰试验技术研究,自主研制了热气供气防除冰试验系统。设计并研制了数字阀流量控制单元、电加热器单元、流量控制单元等试验子系统,建立了试验流程与方法,构建了完善的多路热气供气防除冰试验技术,并对某小型航空发动机进气道部件开展了双路防除冰试验验证,试验结果表明:热气供气防除冰试验系统可模拟真实压气机引出的热气,具备多路热气供气试验能力,温度控制精度可达±1 ℃,流量控制精度可达±1%,性能指标优异,为下一步我国飞行器防除冰试验系统设计与适航审定提供了有力支撑。

     

  • 图 1  热气供气系统结构图

    Figure 1.  Hot air supply system structure chart

    图 2  数字阀流量控制单元

    Figure 2.  Digital valve flow control uint

    图 3  电加热器

    Figure 3.  Electric heater

    图 4  流量控制单元

    Figure 4.  Flow control uint

    图 5  试验流程

    Figure 5.  Test process

    图 6  不同温度流量测量曲线

    Figure 6.  Flow measurement curves of different temperatures

    图 7  不同喉道直径流量测量曲线

    Figure 7.  Flow measurement curves of different throat diameters

    图 8  临界文氏管流量测量包线

    Figure 8.  Critical venturi flow measurement envelope

    图 9  双路流量调节

    Figure 9.  Two-channel flow adjustment

    图 10  温度调节

    Figure 10.  Temperature adjustment

    图 11  模型防除冰效果

    Figure 11.  Anti-icing effect of model

  • [1] 林贵平,卜雪琴,申晓斌. 飞机结冰与防冰技术[M]. 北京: 北京航空航天大学出版社,2016.
    [2] 易贤,李维浩,王应宇,等. 飞机结冰传感器安装位置确定方法[J]. 实验流体力学,2018,32(2): 48-54. YI Xian,LI Weihao,WANG Yingyu,et al. Method of determining the location for aircraft icing prober[J]. Journal of Experiments in Fluid Mechanics,2018,32(2): 48-54. (in Chinese

    YI Xian, LI Weihao, WANG Yingyu, et al. Method of determining the location for aircraft icing prober[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 48-54. (in Chinese)
    [3] 雷桂林,郑梅,董威,等. 积冰密度对机翼除冰过程影响的数值研究[J]. 空气动力学学报,2018,36(6): 958-965. LEI Guilin,ZHENG Mei,DONG Wei,et al. Numerical investigation of ice density effects on airfoil de-icing process[J]. Acta Aerodynamica Sinica,2018,36(6): 958-965. (in Chinese

    LEI Guilin, ZHENG Mei, DONG Wei, et al. Numerical investigation of ice density effects on airfoil de-icing process[J]. Acta Aerodynamica Sinica, 2018, 36(6): 958-965. (in Chinese)
    [4] CAO Yihua,TAN Wenyuan,WU Zhenlong. Aircraft icing: an ongoing threat to aviation safety[J]. Aerospace Science and Technology,2018,75: 353-385. doi: 10.1016/j.ast.2017.12.028
    [5] 王华阁. 航空发动机设计手册:第16册 空气系统及传热分析[M]. 北京: 航空工业出版,2001.
    [6] 冯丽娟,李冬,易贤. 民用航空发动机进气道防冰系统设计方法研究[J]. 航空工程进展,2017,8(3): 335-341. FENG Lijuan,LI Dong,YI Xian. Civil aero-engine inlet anti-icing system power requirement definition methodology investigation[J]. Advances in Aeronautical Science and Engineering,2017,8(3): 335-341. (in Chinese

    FENG Lijuan, LI Dong, YI Xian. Civil aero-engine inlet anti-icing system power requirement definition methodology investigation[J]. Advances in Aeronautical Science and Engineering, 2017, 8(3): 335-341. (in Chinese)
    [7] 常士楠,杨波,冷梦尧,等. 飞机热气防冰系统研究[J]. 航空动力学报,2017,32(5): 1025-1034. CHANG Shinan,YANG Bo,LENG Mengyao,et al. Study on bleed air anti-icing system of aircraft[J]. Journal of Aerospace Power,2017,32(5): 1025-1034. (in Chinese

    CHANG Shinan, YANG Bo, LENG Mengyao, et al. Study on bleed air anti-icing system of aircraft[J]. Journal of Aerospace Power, 2017, 32(5): 1025-1034. (in Chinese)
    [8] 倪章松,刘森云,张军,等. 环境参数对飞机防冰热载荷的影响规律[J]. 航空动力学报,2021,36(1): 8-14. NI Zhangsong,LIU Senyun,ZHANG Jun,et al. Influnce of environment parameters on anti-icing heat load for aircraft[J]. Journal of Aerospace Power,2021,36(1): 8-14. (in Chinese

    NI Zhangsong, LIU Senyun, ZHANG Jun, et al. Influnce of environment parameters on anti-icing heat load for aircraft[J]. Journal of Aerospace Power, 2021, 36(1): 8-14. (in Chinese)
    [9] 陆林杰. 飞机结冰影响与除防冰技术综述[J]. 科技创新与应用,2020(16): 136-138.
    [10] YEOMAN K. Efficiency of a bleed air powered inlet icing protective system[R]. AIAA 94-0717,1994.
    [11] PAPADAKIS M,WONG S H,YEONG H W,et al. Icing tests of a wing model with a hot-air ice protection system[R]. AIAA-2010-7833,2010.
    [12] GRAY V H,GLAHN U. Effect of ice and frost formations on drag of NACA 65(sub 1)-212 airfoil for various modes of thermal ice protection[R]. NACA TN-2962,1953.
    [13] PAPADAKIS M,RODRIGUEZ A O Z,DOMINGOS R H. Experimental and computer model results for a bleed air ice protection system[R]. SAE Technical Paper 2011-38-0034,2011.
    [14] WHALEN E A,BROEREN A P,BRAGG M B,et al. Characteristics of runback ice accretions on airfoils and their aerodynamic effects[R]. AIAA-2005-1065,2005.
    [15] PAPADAKIS M,WONG S H,YEONG H W,et al. Experimental investigation of a bleed air ice protection system[R]. SAE Technical Paper 2007-01-3313,2007.
    [16] 裘燮纲,韩凤华. 飞机防冰系统[M]. 北京: 航空专业教材编审组,2004.
    [17] 倪章松,刘森云,王桥,等. 3 m×2 m结冰风洞试验技术研究进展[J]. 实验流体力学,2019,33(6): 46-53. NI Zhangsong,LIU Senyun,WANG Qiao,et al. Research progress of test technologies for 3 m×2 m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2019,33(6): 46-53. (in Chinese

    NI Zhangsong, LIU Senyun, WANG Qiao, et al. Research progress of test technologies for 3 m×2 m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 46-53. (in Chinese)
    [18] 王梓旭,沈浩,郭龙,等. 3 m×2 m结冰风洞云雾参数校测方法[J]. 实验流体力学,2018,32(2): 61-67. WANG Zixu,SHEN Hao,GUO Long,et al. Cloud calibration method of 3 m×2 m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2018,32(2): 61-67. (in Chinese

    WANG Zixu, SHEN Hao, GUO Long, et al. Cloud calibration method of 3 m×2 m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 61-67. (in Chinese)
    [19] 郭向东,张平涛,赵照,等. 大型结冰风洞云雾场适航应用符合性验证[J]. 航空学报,2020,41(10): 205-219. GUO Xiangdong,ZHANG Pingtao,ZHAO Zhao,et al. Airworthiness application compliance verification of cloud flowfield in large icing wind tunnel[J]. Acta Aeronautica et Astronautica Sinica,2020,41(10): 205-219. (in Chinese

    GUO Xiangdong, ZHANG Pingtao, ZHAO Zhao, et al. Airworthiness application compliance verification of cloud flowfield in large icing wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 205-219. (in Chinese)
    [20] 胡卜元,黄勇,章贵川,等. 低速TPS试验内式流量控制技术研究[J]. 实验流体力学,2019,33(6): 54-58. HU Buyuan,HUANG Yong,ZHANG Guichuan,et al. Internal mass flow control technology of low speed TPS tests[J]. Journal of Experiments in Fluid Mechanics,2019,33(6): 54-58. (in Chinese

    HU Buyuan, HUANG Yong, ZHANG Guichuan, et al. Internal mass flow control technology of low speed TPS tests[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 54-58. (in Chinese)
  • 加载中
图(11)
计量
  • 文章访问数:  53
  • HTML浏览量:  27
  • PDF量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-13
  • 网络出版日期:  2023-12-28

目录

    /

    返回文章
    返回