留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于DMD的双喉道矢量喷管的流场重构与分析

王建明 刘晓东 夏瑄泽 王成军

王建明, 刘晓东, 夏瑄泽, 等. 基于DMD的双喉道矢量喷管的流场重构与分析[J]. 航空动力学报, 2024, 39(6):20210679 doi: 10.13224/j.cnki.jasp.20210679
引用本文: 王建明, 刘晓东, 夏瑄泽, 等. 基于DMD的双喉道矢量喷管的流场重构与分析[J]. 航空动力学报, 2024, 39(6):20210679 doi: 10.13224/j.cnki.jasp.20210679
WANG Jianming, LIU Xiaodong, XIA Xuanze, et al. Flow field reconstruction and characteristic analysis of dual-throat control vector nozzle based on dynamic mode decomposition[J]. Journal of Aerospace Power, 2024, 39(6):20210679 doi: 10.13224/j.cnki.jasp.20210679
Citation: WANG Jianming, LIU Xiaodong, XIA Xuanze, et al. Flow field reconstruction and characteristic analysis of dual-throat control vector nozzle based on dynamic mode decomposition[J]. Journal of Aerospace Power, 2024, 39(6):20210679 doi: 10.13224/j.cnki.jasp.20210679

基于DMD的双喉道矢量喷管的流场重构与分析

doi: 10.13224/j.cnki.jasp.20210679
基金项目: 国家自然科学基金(51476106)
详细信息
    作者简介:

    王建明(1975-),男,副教授,博士。研究领域为流体机械、空气动力学。 Email:jmwang75@163.com

  • 中图分类号: V231.1

Flow field reconstruction and characteristic analysis of dual-throat control vector nozzle based on dynamic mode decomposition

  • 摘要:

    采用分离涡模拟方法对双喉道矢量喷管的三维流场进行数值模拟,分析原始流场的压力系数以及密度梯度分布。运用动力学模态分解技术(DMD)对喷管z=0截面压力系数进行模态分解,选取得到的模态重构流场,将对应的模态进行时间演化并分析其特性。结果表明:利用动力学模态分解得到的前5阶模态可以较完整地重构出双喉道矢量喷管的压力系数场,其中第1模态主要反映的是分离激波的摆动现象以及其对回流区与主流之间剪切层的压力脉动的影响。2阶模态的主要特征是剪切层中的涡系脱落。3阶模态中主要反映的是分离激波强度的变化。4阶、5阶模态主要表现为分离激波位置以及强度上的高阶振荡。

     

  • 图 1  喷管主要结构

    Figure 1.  Design parameters of the dual-injection

    图 2  喷管计算域与计网格

    Figure 2.  Nozzle calculation domain and grid

    图 3  网格无关性验证与实验[9]的对比

    Figure 3.  Comparison of the experimental[9] and computational pressure

    图 4  喷管内部流场压力系数分布

    Figure 4.  Pressure coefficient contour distribution of flow field in the nozzle interior

    图 5  z=0面马赫数等值线

    Figure 5.  Mach number contour at z=0

    图 6  z=0面脉动压力方均根分布

    Figure 6.  Root mean square distribution of pulsating pressure at z=0

    图 7  z=0面马赫数分布

    Figure 7.  Mach number distribution at z=0

    图 8  z=0面压力系数分布

    Figure 8.  Pressure coefficient contour distribution at z=0

    图 9  z=0面X方向密度梯度分布

    Figure 9.  X-direction density gradient distribution at z=0

    图 10  z=0面Y方向密度梯度分布

    Figure 10.  Y-direction density gradient distribution at z=0

    图 11  喷管DMD幅频图

    Figure 11.  Power spectrum of nozzle from DMD

    图 12  喷管零阶模态压力系数云图

    Figure 12.  Pressure coefficient contour distribution of the mean flow mode

    图 13  流场重构相对误差图

    Figure 13.  Relative error between reconstruction and actual flow field

    图 14  DMD重构流场压力系数分布

    Figure 14.  Pressure coefficient distribution of reconstructed flow field from DMD

    图 15  DMD1阶模态压力系数云图

    Figure 15.  Pressure coefficient contour of the frist DMD mode

    图 16  DMD2阶模态压力系数云图

    Figure 16.  Pressure coefficient contour of the second DMD mode

    图 17  DMD3阶模态压力系数云图

    Figure 17.  Pressure coefficient contour of the third DMD mode

    图 18  DMD4阶模态压力系数云图

    Figure 18.  Pressure coefficient contour of the fourth DMD mode

    图 19  DMD5阶模态压力系数云图

    Figure 19.  Pressure coefficient contour of the fifth DMD mode

    表  1  喷管主要设计参数

    Table  1.   Designed parameters of the nozzle

    设计参数 数值
    第1喉道高度hdt1/mm 2967.736
    第2喉道高度hdt2/mm 2967.736
    喷管宽度/mm 101.6
    空腔长度l/mm 76.2
    扩张角θ1/(°) 10
    收敛角θ2/(°) 20
    二次流入射角α/(°) 30
    下载: 导出CSV
  • [1] 王杰. 射流推力矢量技术的研究现状与发展[J]. 科技与创新,2020(10): 81-83,85. WANG Jie. Research status and development of jet thrust vector technology[J]. Science and Technology & Innovation,2020(10): 81-83,85. (in Chinese

    WANG Jie. Research status and development of jet thrust vector technology[J]. Science and Technology & Innovation, 2020(10): 81-83, 85. (in Chinese)
    [2] 贾东兵,周吉利,邓洪伟. 固定几何气动矢量喷管技术综述[J]. 航空发动机,2012,38(6): 29-33,42. JIA Dongbing,ZHOU Jili,DENG Hongwei. Summary of fluidic control fixed geometry nozzle technology[J]. Aeroengine,2012,38(6): 29-33,42. (in Chinese

    JIA Dongbing, ZHOU Jili, DENG Hongwei. Summary of fluidic control fixed geometry nozzle technology[J]. Aeroengine, 2012, 38(6): 29-33, 42. (in Chinese)
    [3] 王伟,赵振,金文栋,等. 基于激波控制的S弯二元矢量喷管数值模拟[J]. 航空发动机,2021,47(5): 19-25. WANG Wei,ZHAO Zhen,JIN Wendong,et al. Numerical simulation of serpentine 2-D vectoring nozzle based on shock wave control[J]. Aeroengine,2021,47(5): 19-25. (in Chinese

    WANG Wei, ZHAO Zhen, JIN Wendong, et al. Numerical simulation of serpentine 2-D vectoring nozzle based on shock wave control[J]. Aeroengine, 2021, 47(5): 19-25. (in Chinese)
    [4] BANAZADEH A,SAGHAFI F,GHOREYSHI M,et al. Multi-directional co-flow fluidic thrust vectoring intended for a small gas turbine: AIAA 2007-2940 [R]. Reston: AIAA,2007.
    [5] DORES D,MADRUGA SANTOS M,KROTHAPALLI A,et al. Characterization of a counterflow thrust vectoring scheme on a gas turbine engine exhaust jet: AIAA 2006-3516[R]. Reston: AIAA,2006.
    [6] DEERE K. Summary of fluidic thrust vectoring research conducted at NASA langley research center: AIAA-2003-3800[R]. Orlando: AIAA,2003.
    [7] DEERE K,BERRIER B,FLAMM J,et al. A computational study of a new dual throat fluidic thrust vectoring nozzle concept: AIAA 2005-3502 [R]. Tucson,US: AIAA,2005
    [8] DEERE K,FLAMM J,BERRIER B,et al. Computational study of an axisymmetric dual throat fluidic thrust vectoring nozzle for a supersonic aircraft application: AIAA 2007-5085[R]. Cincinnati,US: AIAA,2007
    [9] FLAMM J,DEERE K,MASON M,et al. Design enhancements of the two-dimensional,dual throat fluidic thrust vectoring nozzle concept: AIAA 2006-3701[R]. Reston: AIAA,2006.
    [10] 谭慧俊,陈智. 二元双喉道射流推力矢量喷管的数值模拟研究[J]. 航空动力学报,2007,22(10): 1678-1684. TAN Huijun,CHEN Zhi. A computational study of 2-D dual-throat fluidic thrust-vectoring nozzles[J]. Journal of Aerospace Power,2007,22(10): 1678-1684. (in Chinese

    TAN Huijun, CHEN Zhi. A computational study of 2-D dual-throat fluidic thrust-vectoring nozzles[J]. Journal of Aerospace Power, 2007, 22(10): 1678-1684. (in Chinese)
    [11] 汪明生,杨平. 双喉道推力矢量喷管的内流特性研究[J]. 推进技术,2008,29(5): 566-572. WANG Mingsheng,YANG Ping. Study of dual throat nozzle internal flow characteristic[J]. Journal of Propulsion Technology,2008,29(5): 566-572. (in Chinese

    WANG Mingsheng, YANG Ping. Study of dual throat nozzle internal flow characteristic[J]. Journal of Propulsion Technology, 2008, 29(5): 566-572. (in Chinese)
    [12] 范志鹏,徐惊雷,汪阳生. 下游喉道对双喉道气动矢量喷管气动性能的影响[J]. 航空动力学报,2015,30(3): 580-587. FAN Zhipeng,XU Jinglei,WANG Yangsheng. Effects of downstream throat on aerodynamic performance of dual throat nozzle[J]. Journal of Aerospace Power,2015,30(3): 580-587. (in Chinese

    FAN Zhipeng, XU Jinglei, WANG Yangsheng. Effects of downstream throat on aerodynamic performance of dual throat nozzle[J]. Journal of Aerospace Power, 2015, 30(3): 580-587. (in Chinese)
    [13] 范志鹏,徐惊雷,郭帅. 次流通道对双喉道气动矢量喷管的性能影响研究[J]. 推进技术,2014,35(9): 1174-1180. FAN Zhipeng,XU Jinglei,GUO Shuai. Effects of secondary injection pipe on dual throat nozzle ThrustVectoring performances[J]. Journal of Propulsion Technology,2014,35(9): 1174-1180. (in Chinese

    FAN Zhipeng, XU Jinglei, GUO Shuai. Effects of secondary injection pipe on dual throat nozzle ThrustVectoring performances[J]. Journal of Propulsion Technology, 2014, 35(9): 1174-1180. (in Chinese)
    [14] 顾瑞. 新型双喉道气动矢量喷管机理与关键技术研究[D]. 南京: 南京航空航天大学,2013. GU Rui. Research on the key technology of new dual throat fluidic vectoring thrust nozzle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2013. (in Chinese

    GU Rui. Research on the key technology of new dual throat fluidic vectoring thrust nozzle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. (in Chinese)
    [15] SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics,2010,656: 5-28. doi: 10.1017/S0022112010001217
    [16] 王建明,王涵,桂琳. 压气机叶栅叶顶间隙流的动力学模态分解[J]. 推进技术,2018,39(3): 520-527. WANG Jianming,WANG Han,GUI Lin. Dynamic mode decomposition of tip clearance flow in a compressor cascade[J]. Journal of Propulsion Technology,2018,39(3): 520-527. (in Chinese

    WANG Jianming, WANG Han, GUI Lin. Dynamic mode decomposition of tip clearance flow in a compressor cascade[J]. Journal of Propulsion Technology, 2018, 39(3): 520-527. (in Chinese)
    [17] 叶坤,叶正寅,武洁,等. 基于DMD方法的翼型大迎角失速流动稳定性研究[J]. 空气动力学学报,2018,36(3): 518-528. YE Kun,YE Zhengyin,WU Jie,et al. Stability of stalled flow field at high angle of attack based on DMD method[J]. Acta Aerodynamica Sinica,2018,36(3): 518-528. (in Chinese

    YE Kun, YE Zhengyin, WU Jie, et al. Stability of stalled flow field at high angle of attack based on DMD method[J]. Acta Aerodynamica Sinica, 2018, 36(3): 518-528. (in Chinese)
    [18] 姚李超,付超,张俊强,等. 非定常来流压力下基于DMD方法的预冷器换热特性[J]. 航空动力学报,2020,35(10): 2064-2077. YAO Lichao,FU Chao,ZHANG Junqiang,et al. Heat transfer performance of pre-cooler under unsteady inflow pressure condition using dynamic mode decomposition method[J]. Journal of Aerospace Power,2020,35(10): 2064-2077. (in Chinese

    YAO Lichao, FU Chao, ZHANG Junqiang, et al. Heat transfer performance of pre-cooler under unsteady inflow pressure condition using dynamic mode decomposition method[J]. Journal of Aerospace Power, 2020, 35(10): 2064-2077. (in Chinese)
    [19] WANG Jianming,LUAN Siqi,ZHU Jianyong,et al. Fourier mode decomposition of unsteady flows in a single injection port fluidic thrust vectoring nozzle[J]. International Journal of Aeronautical and Space Sciences,2021,22(2): 223-238. doi: 10.1007/s42405-020-00298-z
    [20] ROWLEY C W,MEZIĆ I,BAGHERI S,et al. Spectral analysis of nonlinear flows[J]. Journal of Fluid Mechanics,2009,641: 115-127. doi: 10.1017/S0022112009992059
    [21] 孙国勇,董加新,赵志高,等. 动力学模态分解方法重构及预测流场误差分析[J]. 江苏大学学报(自然科学版),2021,42(2): 145-152. SUN Guoyong,DONG Jiaxin,ZHAO Zhigao,et al. Error analysis of dynamic modal decomposition method reconstruction and prediction for flow field[J]. Journal of Jiangsu University (Natural Science Edition),2021,42(2): 145-152. (in Chinese

    SUN Guoyong, DONG Jiaxin, ZHAO Zhigao, et al. Error analysis of dynamic modal decomposition method reconstruction and prediction for flow field[J]. Journal of Jiangsu University (Natural Science Edition), 2021, 42(2): 145-152. (in Chinese)
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  38
  • HTML浏览量:  22
  • PDF量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-29
  • 网络出版日期:  2024-01-20

目录

    /

    返回文章
    返回