Aircraft-engine integrated performance analysis of turbo-electric distributed propulsion
-
摘要:
为探究涡轮-电分布式推进(turbo-electric distributed propulsion,TeDP)系统的性能方案对飞机任务油耗的影响,建立了推进系统的性能模型和飞/发一体化评估模型。以150座商用客机为例,研究了推进系统设计参数对飞机质量、油耗的影响,并分析了不同电池放电策略能够带来的收益和负面影响。结果表明:燃气涡轮发动机的涡轮前温度和电力系统的相对额定功率均存在使任务油耗最低的最优值;电池的能量应优先用于在负载端无法满载工作时提供功率补充,该放电策略在电池能量密度超过400 W∙h/kg时就能实现任务油耗的降低。本文建立的飞/发一体化设计方法可为涡轮-电分布式推进系统的综合优化设计提供参考。
Abstract:In order to explore the influence of the design parameters of the turbo-electric distributed propulsion (TeDP) system on mission fuel consumption, a performance model of the propulsion system and an integrated aircraft-engine evaluation model were established. The influences of the design parameters of the propulsion system on the weight and fuel consumption of the aircraft were studied based on a 150-seats civil aircraft concept. In addition, various operating strategies of battery were analyzed. The results showed that: there existed optimal values of turbine inlet temperature and relative power of electric system to achieve a minimum fuel consumption in mission profile; the energy use of battery should be prioritized to provide power supplementation when the load can't working at full power, which can achieve the reduction of fuel consumption using a battery with energy density higher than 400 W∙h/kg. The integrated design method established can provide supports for the optimization design of the TeDP.
-
表 1 各部件自变量及残差方程
Table 1. Parameters and residual equations of components
子系统 部件 自变量 残差方程 燃气涡轮
发动机低压压气机 nl,zl 高压压气机 nh,zh y1 = W2−W25 燃烧室 Tt4 高压涡轮 Wth,cor y2 = W25−W4
y3 = Pth−Pch低压涡轮 Wtl,cor y4 = W4−W25
y5 = Ptl−Pcl自由涡轮 Wtf,cor,ntf y6 = W45−W5 喷管 y7 = W5−W9 电池 Hp 推进器 推进风扇 nf, zf y8 = Pfan(1−Hp)−Pcoreηe 喷管 Y9 = W23D−W9D 表 2 分布式推进系统模型验证
Table 2. Model verification of distributed propulsion system
验证参数 h=0 m, Ma=0 h=9144 m, Ma=0.84(设计点) h=12192 m, Ma=0.84 本文 NASA 误差/% 本文 NASA 误差/% 本文 NASA 误差/% 涡轮发动机流量/(kg/s) 90.22 89.05 1.30 46.99 46.96 0.07 30.16 29.78 1.25 涡/发动机功率/MW 54.62 54.00 1.14 27.51 27.62 −0.4 16.69 16.66 0.18 推进器流量/(kg/s) 2605.89 2636.451 −1.17 1264.62 1267.89 −0.26 809.66 811.16 −0.18 推力/kN 552.10 551.45 0.12 119.03 118.08 0.8 74.11 73.07 1.41 耗油率/(kg/(kgf·h)) 16.49 16.21 1.73 36.95 36.93 0.06 35.68 35.76 −0.23 表 3 飞/发匹配模型验证
Table 3. Verification of aircraft-engine matching model
验证参数 ECO-150-300 本文 误差/% 本文(燃油质量修正) 误差(燃油质量修正)/% 总重/kg 63324.2 57989.77 −8.42 64191.91 1.37 任务油耗/kg 11437.3 10461.38 −8.53 11580.24 1.25 燃油容量/kg 13107.9 10461.38 −20.19 13270.96 1.24 载荷容量/kg 13970.6 13970.6 0 13970.6 0 表 4 飞行器及电力系统参数
Table 4. Parameters of aircrafts and electrical system
参数 数值 阻力极曲线 $ {C_{\text{d}}} = 0.081\;2C_{\text{l}}^2 - 0.021{C_{\text{l}}} + 0.014\;5 $ 空重比 $ \varGamma = 1.02W_{{\text{to}}}^{ - 0.06} $ 翼载荷/(N/m2) 6000 任务载荷/kg 18000 电力系统传输效率/% 93 源端功率密度/(kW/kg) 8.853 负载端功率密度/(kW/kg) 8.14 -
[1] GOHARDANI A S,DOULGERIS G,SINGH R. Challenges of future aircraft propulsion: a review of distributed propulsion technology and its potential application for the all electric commercial aircraft[J]. Progress in Aerospace Sciences,2011,47(5): 369-391. doi: 10.1016/j.paerosci.2010.09.001 [2] FELDER J,KIM H,BROWN G,et al. An examination of the effect of boundary layer ingestion on turbo-electric distributed propulsion systems[C]// 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Orlando: AIAA,2011: 300-326. [3] FELDER J,BROWN G,DAEKIM H,et al. Turboelectric distributed propulsion in a hybrid wing body aircraft[C]// 20th International Society for Airbreathing Engines. Gothenburg: ISABE,2011: 1340-1360. [4] WICK A T,HOOKER J R,ZEUNE C H. Integrated aerodynamic benefits of distributed propulsion[C]//Proceedings of the 53rd AIAA Aerospace Sciences Meeting. Reston,Virginia: AIAA,2015: 1500-1536. [5] DANIS R A,FREEMAN J L,SCHILTGCN B T. Applications for hybrid electric power and energy supplementation on a single-aisle airliner[C]//2018 AIAA/IEEE Electric Aircraft Technologies Symposium. Piscataway,US: IEEE,2018: 5021-5040. [6] 黄俊. 分布式电推进飞机设计技术综述[J]. 航空学报,2021,42(3): 624037. HUANG Jun. Survey on design technology of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica,2021,42(3): 624037. (in ChineseHUANG Jun. Survey on design technology of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 624037. (in Chinese) [7] 孔祥浩,张卓然,陆嘉伟,等. 分布式电推进飞机电力系统研究综述[J]. 航空学报,2018,39(1): 021651. KONG Xianghao,ZHANG Zhuoran,LU Jiawei,et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica,2018,39(1): 021651. (in ChineseKONG Xianghao, ZHANG Zhuoran, LU Jiawei, et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 021651. (in Chinese) [8] 廖忠权. 航空混合电推进系统发展研究[J]. 航空动力,2018(2): 45-50. LIAO Zhongquan. Research on the development of hybrid electric propulsion system[J]. Aerospace Power,2018(2): 45-50. (in ChineseLIAO Zhongquan. Research on the development of hybrid electric propulsion system[J]. Aerospace Power, 2018(2): 45-50. (in Chinese) [9] MATTINGLY J D,HEISER W H,PRATT D T. Aircraft engine design,second edition[M]. Reston,US: AIAA,2002. [10] 胡军,张津. 旅客机/涡扇发动机设计参数一体化选择研究[J]. 北京航空航天大学学报,1996,22(2): 183-188. HU Jun,ZHANG Jin. Study on integrated selection of design parameters of passenger aircraft/turbofan engine[J]. Journal of Beijing University of Aeronautics and Astronautics,1996,22(2): 183-188. (in ChineseHU Jun, ZHANG Jin. Study on integrated selection of design parameters of passenger aircraft/turbofan engine[J]. Journal of Beijing University of Aeronautics and Astronautics, 1996, 22(2): 183-188. (in Chinese) [11] GKOUTZAMANIS V G,SRINIVAS A,MAVROUDI D,et al. Conceptual design and energy storage positioning aspects for a hybrid-electric light aircraft[R]. ASME Paper GT2020-15477,2020. [12] 李也. 通用飞机混合电推进系统方案设计及性能分析[D]. 北京: 清华大学,2019. LI Ye. Design and performance analysis of general aircraft hybrid electric propulsion system[D]. Beijing: Tsinghua University,2019. (in ChineseLI Ye. Design and performance analysis of general aircraft hybrid electric propulsion system[D]. Beijing: Tsinghua University, 2019. (in Chinese) [13] PALAIA G,ZANETTI D,ABU SALEM K,et al. THEA-CODE: a design tool for the conceptual design of hybrid-electric aircraft with conventional or unconventional airframe configurations[J]. Mechanics and Industry,2021,22: 19. doi: 10.1051/meca/2021012 [14] RUSCIO J P,JEZEGOU J,BENARD E,et al. Hybrid electric distributed propulsion overall aircraft design process and models for general aviation (FAST GA)[J]. IOP Conference Series: Materials Science and Engineering,2021,1024: 012072. doi: 10.1088/1757-899X/1024/1/012072 [15] BRAVO G M,PRALIYEV N,VERESS Á. Performance analysis of hybrid electric and distributed propulsion system applied on a light aircraft[J]. Energy,2021,214: 118823. doi: 10.1016/j.energy.2020.118823 [16] 雷涛,孔德林,王润龙,等. 分布式电推进飞机动力系统评估优化方法[J]. 航空学报,2021,42(6): 624047. LEI Tao,KONG Delin,WANG Runlong,et al. Evaluation and optimization method for power systems of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica,2021,42(6): 624047. (in ChineseLEI Tao, KONG Delin, WANG Runlong, et al. Evaluation and optimization method for power systems of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 624047. (in Chinese) [17] SCHILTGEN B T,FREEMAN J. ECO-150-300 design and performance: a tube-and-wing distributed electric propulsion airliner[C]// AIAA Scitech 2019 Forum. San Diego: AIAA,2015: 1808-1823. [18] 廉筱纯,吴虎. 航空发动机原理[M]. 西安: 西北工业大学出版社,2005. LIAN Xiaochun,WU Hu. Aeroengine principle[M]. Xi’an: Northwestern Polytechnical University Press,2005. (in ChineseLIAN Xiaochun, WU Hu. Aeroengine principle[M]. Xi’an: Northwestern Polytechnical University Press, 2005. (in Chinese) [19] 卜贤坤,邵伏永. 高空长航时无人机/涡扇发动机的飞发一体化分析[J]. 战术导弹技术,2016(3): 65-70,88. BU Xiankun,SHAO Fuyong. High altitude long endurance unmanned air vehicle and turbofan engine integrated design[J]. Tactical Missile Technology,2016(3): 65-70,88. (in ChineseBU Xiankun, SHAO Fuyong. High altitude long endurance unmanned air vehicle and turbofan engine integrated design[J]. Tactical Missile Technology, 2016(3): 65-70, 88. (in Chinese) [20] BRADLEY M K,DRONEY C K. Subsonic ultra green aircraft research: Phase Ⅰ final report[M]. Langley: National Aeronautics and Space Administration,2011. [21] 余若璇. 民用飞机标准爬升剖面性能计算[J]. 科技视界,2016(17): 73,75. YU Ruoxuan. Performance calculation of standard climb profile of civil aircraft[J]. Science & Technology Vision,2016(17): 73,75. (in ChineseYU Ruoxuan. Performance calculation of standard climb profile of civil aircraft[J]. Science & Technology Vision, 2016(17): 73, 75. (in Chinese) -