留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轴流压气机叶片与机匣处理一体化优化设计

范忠岗 巴顿 邱佳慧 杨晨 杜娟

范忠岗, 巴顿, 邱佳慧, 等. 轴流压气机叶片与机匣处理一体化优化设计[J]. 航空动力学报, 2024, 39(7):20220069 doi: 10.13224/j.cnki.jasp.20220069
引用本文: 范忠岗, 巴顿, 邱佳慧, 等. 轴流压气机叶片与机匣处理一体化优化设计[J]. 航空动力学报, 2024, 39(7):20220069 doi: 10.13224/j.cnki.jasp.20220069
FAN Zhonggang, BA Dun, QIU Jiahui, et al. Integrated design optimization of blade and casing treatment in axial compressor[J]. Journal of Aerospace Power, 2024, 39(7):20220069 doi: 10.13224/j.cnki.jasp.20220069
Citation: FAN Zhonggang, BA Dun, QIU Jiahui, et al. Integrated design optimization of blade and casing treatment in axial compressor[J]. Journal of Aerospace Power, 2024, 39(7):20220069 doi: 10.13224/j.cnki.jasp.20220069

轴流压气机叶片与机匣处理一体化优化设计

doi: 10.13224/j.cnki.jasp.20220069
基金项目: 国家自然科学基金(51922098); 国家重大科技专项(2017-Ⅱ-0004-0017,J2019-Ⅱ-0020-0041)
详细信息
    作者简介:

    范忠岗(1998-),男,博士生,主要从事压气机流动稳定性研究

    通讯作者:

    杜娟(1983-),女,研究员,博士,主要从事压气机内部流动失稳机理、稳定性调控策略及实验测量方面研究。E-mail:dujuan@iet.cn

  • 中图分类号: V231.3

Integrated design optimization of blade and casing treatment in axial compressor

  • 摘要:

    针对一台低速轴流压气机搭建了叶片与机匣处理一体化优化设计平台,基于自由变形技术关联设计参数与工程参数,实现多目标优化。综合考虑效率和裕度指标,在峰值效率不降的情况下获得了7.21%的裕度拓宽量。针对最优方案,分析了叶顶堵塞及损失分布,探讨了叶片与机匣处理一体化优化设计的扩稳机理。研究发现:叶片弯掠和机匣处理组合作用下,最大堵塞位置由24.7%叶顶轴向弦长后移至33.6%叶顶轴向弦长,最大损失位置由21.4%叶顶轴向弦长后移至30.6%叶顶轴向弦长,叶顶泄漏涡的抑制和低能堵塞区的消除是一体化优化设计扩稳的主要原因。

     

  • 图 1  网格无惯性验证

    Figure 1.  Grid-dependency test

    图 2  计算域及边界条件

    Figure 2.  Computational domain and boundary conditions

    图 3  数值和实验气动性能对比

    Figure 3.  Comparison of numerical and experimental aerodynamic performance

    图 4  FFD控制体

    Figure 4.  FFD control volume

    图 5  优化流程示意图

    Figure 5.  Optimization process diagram

    图 6  优化数据库

    Figure 6.  Optimization database

    图 7  最优设计

    Figure 7.  Optimal design

    图 8  优化前后叶片形状对比

    Figure 8.  Comparison of blade shape before and after optimization

    图 9  优化前后进口攻角对比

    Figure 9.  Comparison of inlet incidence before and after optimization

    图 10  Pareto图

    Figure 10.  Pareto diagram

    图 11  回归分析与相关性分析

    Figure 11.  Regression analysis and correlation analysis

    图 12  优化前后压气机特性线对比

    Figure 12.  Comparison of compressor performance before and after optimization

    图 13  优化前后轴向速度对比

    Figure 13.  Comparison of axial velocity before and after optimization

    图 14  不同工况下堵塞因子轴向分布对比

    Figure 14.  Axial distribution comparison of blockage factor at different conditions

    图 15  优化前后堵塞因子轴向分布对比

    Figure 15.  Axial distribution comparison of blockage factor before and after optimization

    图 16  优化前后叶顶涡量分布对比

    Figure 16.  Comparison of vorticity magnitude before and after optimization

    图 17  优化前后叶顶载荷对比

    Figure 17.  Comparison of rotor tip blade loading before and after optimization

    图 18  优化前后损失轴向分布对比

    Figure 18.  Axial distribution comparison of loss before and after optimization

    图 19  优化前后压气机特性线对比

    Figure 19.  Comparison of compressor performance before and after optimization

    表  1  压气机单转子设计参数

    Table  1.   Design parameters of the compressor single rotor

    参数 数值
    设计转速/(r/min) 2400
    设计流量/(kg/s) 2.9
    马赫数 0.19
    转子数 60
    叶顶弦长/mm 36.3
    叶顶间隙/mm 0.8
    叶顶轴向弦长/mm 22.8
    轮毂比 0.75
    下载: 导出CSV

    表  2  设计参数的变化范围

    Table  2.   Range of design parameters

    设计变量 控制点 范围
    叶片控制体 叶片前缘弯(LE bend) Pijki=0~2; j=0; k=2) −0.1~0.25Cax
    叶片尾缘弯(TE bend) Pijki=0~2; j=2; k=2) −0.1~0.25Cax
    叶片前缘掠(LE sweep) Pijki=0~2; j=0; k=2) −0.1~0.25Cax
    叶片尾缘掠(TE sweep) Pijki=0~2; j=2; k=2) −0.1~0.25Cax
    叶片旋转(Rotation) Pijki=0~2; j=0~2; k=2; except i=j=1) −10°~10°
    轴向缝控制体 轴向缝弯(Slot bend) Pijki =0~2; j=0~2; k=2) −0.15~0.15Cax
    轴向缝掠(Slot sweep) Pijki =0~2; j=0~2; k=2) −0.15~0.15Cax
    轴向缝扭(Slot twist) Pijki=0~2; j=1,2; k=0~2; except i=j=1) −60°~60°
    轴向缝高(Slot height) Pijki=0~2; j=0~2; k=2) −0.05~0.2Cax
    周向槽 周向槽缩放(Groove scale) 0.044~0.178Cax
    下载: 导出CSV
  • [1] DAY I J. Stall,surge,and 75 years of research[J]. Journal of Turbomachinery,2016,138(1): 011001. doi: 10.1115/1.4031473
    [2] 卢新根,楚武利,朱俊强,等. 轴流压气机机匣处理研究进展及评述[J]. 力学进展,2006,36(2): 222-232. LU Xingen,CHU Wuli,ZHU Junqiang,et al. A review of studies on casing treatment of axial-flow compressor[J]. Advances in Mechanics,2006,36(2): 222-232. (in Chinese

    LU Xingen, CHU Wuli, ZHU Junqiang, et al. A review of studies on casing treatment of axial-flow compressor[J]. Advances in Mechanics, 2006, 36(2): 222-232. (in Chinese)
    [3] OSBORN W M,MOORE R D. Effect of casing treatment of overall performance of axial-flow transonic fan stage with pressure ratio of 1.75 and tip solidity of 1.5[R]. NASA-TM-X-3477. 1977.
    [4] BAILEY,EVERETT E. Effect of grooved casing treatment on the flow range capability of a single-stage axial-flow compressor[R]. NASA-TM-X-2459,1972.
    [5] 张皓光,谭锋,安康,等. 缝式机匣处理及其轴向偏转角对跨声速轴流压气机稳定性的改善[J]. 航空学报,2018,39(8): 108-122. ZHANG Haoguang,TAN Feng,AN Kang,et al. Effect of slot casing treatment and it’s axial deflection angle on stability of transonic axial flow compressor[J]. Acta Aeronautica et Astronautica Sinica,2018,39(8): 108-122. (in Chinese

    ZHANG Haoguang, TAN Feng, AN Kang, et al. Effect of slot casing treatment and it’s axial deflection angle on stability of transonic axial flow compressor[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8): 108-122. (in Chinese)
    [6] 楚武利,卢新根,吴艳辉. 带周向槽机匣处理的压气机内部流动数值模拟与试验[J]. 航空动力学报,2006,21(1): 100-105. CHU Wuli,LU Xingen,WU Yanhui. Numerical and experimental investigations of the flow in a compressor with circumferential grooves[J]. Journal of Aerospace Power,2006,21(1): 100-105. (in Chinese

    CHU Wuli, LU Xingen, WU Yanhui. Numerical and experimental investigations of the flow in a compressor with circumferential grooves[J]. Journal of Aerospace Power, 2006, 21(1): 100-105. (in Chinese)
    [7] 张皓光,楚武利,吴艳辉,等. 自适应流通机匣处理改善压气机性能的机理[J]. 推进技术,2010,31(3): 301-308. ZHANG Haoguang,CHU Wuli,WU Yanhui,et al. Flow mechanisms of improving compressor performance through self recirculation casing treatment[J]. Journal of Propulsion Technology,2010,31(3): 301-308. (in Chinese

    ZHANG Haoguang, CHU Wuli, WU Yanhui, et al. Flow mechanisms of improving compressor performance through self recirculation casing treatment[J]. Journal of Propulsion Technology, 2010, 31(3): 301-308. (in Chinese)
    [8] 孙晓峰,孙大坤. 失速先兆抑制型机匣处理研究进展[J]. 航空学报,2015,36(8): 2529-2543. SUN Xiaofeng,SUN Dakun. Research progresses of stall precursor-suppressed casing treatment[J]. Acta Aeronautica et Astronautica Sinica,2015,36(8): 2529-2543. (in Chinese

    SUN Xiaofeng, SUN Dakun. Research progresses of stall precursor-suppressed casing treatment[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2529-2543. (in Chinese)
    [9] 孙大坤,孙晓峰. 非定常机匣处理对失速先兆波的抑制作用实验研究[J]. 航空动力学报,2008,23(4): 671-679. SUN Dakun,SUN Xiaofeng. An experimental study on inhibition of unsteady casing treatment on stall inception[J]. Journal of Aerospace Power,2008,23(4): 671-679. (in Chinese

    SUN Dakun, SUN Xiaofeng. An experimental study on inhibition of unsteady casing treatment on stall inception[J]. Journal of Aerospace Power, 2008, 23(4): 671-679. (in Chinese)
    [10] ZHAO Qingjun,ZHOU Xiaoyong,XIANG Xiaorong. Multi-objective optimization of groove casing treatment in a transonic compressor[J]. Proceedings of the Institution of Mechanical Engineers,Part A: Journal of Power and Energy,2014,228(6): 626-637.
    [11] BA Dun,ZHANG Qianfeng,DU Juan,et al. Design optimization of axial slot casing treatment in a highly-loaded mixed-flow compressor[J]. Aerospace Science and Technology,2020,107: 106262. doi: 10.1016/j.ast.2020.106262
    [12] ZHU Guoming,YANG Bo. Optimization of slots-groove coupled casing treatment for an axial transonic compressor[J]. Journal of Turbomachinery,2020,142(8): 081003. doi: 10.1115/1.4046047
    [13] 彭铖,李强,杨金广,等. 一种新的轴流压气机叶片参数化方法[J]. 燃气涡轮试验与研究,2020,33(2): 34-38,62. PENG Cheng,LI Qiang,YANG Jinguang,et al. A novel parameterization method of axial compressor blade[J]. Gas Turbine Experiment and Research,2020,33(2): 34-38,62. (in Chinese

    PENG Cheng, LI Qiang, YANG Jinguang, et al. A novel parameterization method of axial compressor blade[J]. Gas Turbine Experiment and Research, 2020, 33(2): 34-38, 62. (in Chinese)
    [14] GAGNON H,ZINGG D W. Two-level free-form and axial deformation for exploratory aerodynamic shape optimization[J]. AIAA Journal,2015,53(7): 2015-2026. doi: 10.2514/1.J053575
    [15] JOHN A,SHAHPAR S,QIN Ning. Novel compressor blade shaping through a free-form method[J]. Journal of Turbomachinery,2017,139(8): 081002. doi: 10.1115/1.4035833
    [16] BAERT L,BEAUCAIRE P,LEBORGNE M,et al. Tackling highly constrained design problems: efficient optimisation of a highly loaded transonic compressor[R]. Charlotte,US: ASME,2017.
    [17] ADJEI R A,FAN Chengwei,WANG Weizhe,et al. Multidisciplinary design optimization for performance improvement of an axial flow fan using free-form deformation[J]. Journal of Turbomachinery,2021,143(1): 011003. doi: 10.1115/1.4048793
    [18] MENZEL S,SENDHOFF B. Representing the change - free form deformation for evolutionary design optimization[M]. Berlin,Heidelberg: Springer,2008: 63-86.
    [19] LI Lei,JIAO Jiangkun,SUN Shouyi,et al. Aerodynamic shape optimization of a single turbine stage based on parameterized Free-Form Deformation with mapping design parameters[J]. Energy,2019,169: 444-455. doi: 10.1016/j.energy.2018.12.031
    [20] HU Handuo,YU Jianyang,SONG Yanping,et al. The application of support vector regression and mesh deformation technique in the optimization of transonic compressor design[J]. Aerospace Science and Technology,2021,112: 106589. doi: 10.1016/j.ast.2021.106589
    [21] SEDERBERG T W,PARRY S R. Free-form deformation of solid geometric models[C]//Proceedings of the 13th annual conference on Computer graphics and interactive techniques. New York: ACM,1986: 151-160.
    [22] DU Juan,LIN Feng,LI Jichao,et al. A study of performance and flow mechanism of a slot-groove hybrid casing treatment in a low-speed compressor[R]. Montreal,Canada: ASME,2015.
    [23] BENINI E,BIOLLO R. Aerodynamics of swept and leaned transonic compressor-rotors[J]. Applied Energy,2007,84(10): 1012-1027. doi: 10.1016/j.apenergy.2007.03.003
    [24] DU Juan,LIN Feng,ZHANG Hongwu,et al. Numerical investigation on the self-induced unsteadiness in tip leakage flow for a transonic fan rotor[J]. Journal of Turbomachinery,2010,132(2): 021017.1-021017.9
    [25] LU Xingen,CHU Wuli,ZHU Junqiang,et al. Numerical investigations of the coupled flow through a subsonic compressor rotor and axial skewed slot[J]. Journal of Turbomachinery,2009,131(1): 011001-011008. doi: 10.1115/1.2948959
    [26] 巴顿,杜娟,张千丰,等. 基于B样条的斜流压气机机匣处理优化设计[J]. 工程热物理学报,2020,41(9): 2171-2177. BA Dun,DU Juan,ZHANG Qianfeng,et al. Design and optimization of casing treatment based on B-spline curves in a mixed-flow compressor[J]. Journal of Engineering Thermophysics,2020,41(9): 2171-2177. (in Chinese

    BA Dun, DU Juan, ZHANG Qianfeng, et al. Design and optimization of casing treatment based on B-spline curves in a mixed-flow compressor[J]. Journal of Engineering Thermophysics, 2020, 41(9): 2171-2177. (in Chinese)
    [27] MUSTAFFA A F,KANJIRAKKAD V. Single and multiple circumferential casing groove for stall margin improvement in a transonic axial compressor[J]. Journal of Turbomachinery,2021,143(7): 071010. doi: 10.1115/1.4050444
    [28] 李志远. RANS-LES混合方法轴流压气机数值模拟及熵产损失模型构建[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所),2017. LI Zhiyuan. Numerical simulation of axial compressor and construction of entropy generation loss model based on the hybrid RANS/LES method[D]. Beijing: Institute of Engineering Thermophysics,Chinese Academy of Sciences,2017. (in Chinese

    LI Zhiyuan. Numerical simulation of axial compressor and construction of entropy generation loss model based on the hybrid RANS/LES method[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2017. (in Chinese)
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  30
  • HTML浏览量:  16
  • PDF量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-14
  • 网络出版日期:  2024-03-04

目录

    /

    返回文章
    返回