留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时间推进法的涡轮通流设计

蒋筑宇 范召林 邱名 叶文明

蒋筑宇, 范召林, 邱名, 等. 基于时间推进法的涡轮通流设计[J]. 航空动力学报, 2024, 39(8):20220072 doi: 10.13224/j.cnki.jasp.20220072
引用本文: 蒋筑宇, 范召林, 邱名, 等. 基于时间推进法的涡轮通流设计[J]. 航空动力学报, 2024, 39(8):20220072 doi: 10.13224/j.cnki.jasp.20220072
JIANG Zhuyu, FAN Zhaolin, QIU Ming, et al. Turbine through flow design based on time-marching method[J]. Journal of Aerospace Power, 2024, 39(8):20220072 doi: 10.13224/j.cnki.jasp.20220072
Citation: JIANG Zhuyu, FAN Zhaolin, QIU Ming, et al. Turbine through flow design based on time-marching method[J]. Journal of Aerospace Power, 2024, 39(8):20220072 doi: 10.13224/j.cnki.jasp.20220072

基于时间推进法的涡轮通流设计

doi: 10.13224/j.cnki.jasp.20220072
详细信息
    作者简介:

    蒋筑宇(1991-),男,博士生,主要从事叶轮机气动热力学研究

    通讯作者:

    邱名(1984-),男,副研究员、硕士生导师,博士,主要从事叶轮机气动热力学研究。E-mail:qiu_ming_abc@163.com

  • 中图分类号: V231.1

Turbine through flow design based on time-marching method

  • 摘要:

    为建立合理的涡轮设计参数计算方法,保证设计准确性,基于Euler方程时间推进通流设计方法,提出了一种基于二次函数的叶排通道S2流面周向角和堵塞系数近似计算方法。通流设计方法利用有限体积法求解正交曲线坐标系下的二维非守恒型Euler方程,使用Riemann精确解确定网格单位界面参数,采用具有TVD性质的3阶精度Godunov格式,时间方向采用半隐式格式。利用经验损失模型计算叶型损失、二次流损失和叶尖间隙泄漏流损失,并将二次流损失和叶尖间隙泄漏流损失沿径向进行重新分布,而激波损失被认为是可以准确计算。对某型单级涡轮进行了通流设计研究,并根据通流设计结果进行了三维叶片造型,利用三维黏性CFD软件对涡轮进行数值模拟,校验了通流设计方法的有效性。当涡轮进出口条件一定时,相比于三维CFD结果,通流流量结果高约1.46%,膨胀比低0.005,绝热效率高0.0077。最后可以得到如下结论:通流设计方法所需网格量少,计算效率高,收敛性好;叶排通道S2流面周向角和堵塞系数计算方法合理;涡轮总体性能参数,以及流量系数、载荷系数和反力度等无量纲参数计算准确度较高。

     

  • 图 1  坐标参数

    Figure 1.  Coordinate parameters

    图 2  叶型中弧线周向坐标

    Figure 2.  Circumferential coordinate of blade profile

    图 3  叶栅通道宽度

    Figure 3.  Cascade passage width

    图 4  二次流损失分布

    Figure 4.  Secondary loss distribution

    图 5  叶尖间隙泄漏流损失分布

    Figure 5.  Blade tip clearance leakage loss distribution

    图 6  计算网格

    Figure 6.  Computation grid

    图 7  流量变化

    Figure 7.  Mass flow variation

    图 8  堵塞系数

    Figure 8.  Blockage coefficient

    图 9  叶型截面

    Figure 9.  Blade profile sections

    图 10  子午面马赫数

    Figure 10.  Meridional Mach number

    图 11  子午面相对马赫数

    Figure 11.  Meridional relative Mach number

    图 12  叶排出口气流角

    Figure 12.  Blade row exit flow angle

    图 13  叶排出口总压恢复系数

    Figure 13.  Blade row exit total pressure recovery

    图 14  叶排出口环量

    Figure 14.  Blade row exit circulation

    图 15  转子进口流量系数

    Figure 15.  Rotor inlet flow coefficient

    图 16  载荷系数

    Figure 16.  Loading coefficient

    图 17  转子反力度

    Figure 17.  Rotor reaction

    表  1  涡轮总体性能

    Table  1.   Turbine overall performance

    计算方法 G/($ {\text{kg}} \cdot \sqrt {\text{K}} \cdot {{\text{s}}^{ - 1}} \cdot {\text{kP}}{{\text{a}}^{ - 1}} $) π η
    通流设计 0.5015 2.552 0.9291
    三维CFD 0.4943 2.557 0.9214
    下载: 导出CSV
  • [1] WU C H. A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial,radial,and mixed-flow types[J]. Journal of Fluids Engineering,1952,74(8): 1363-1380.
    [2] NOVAK R A. Streamline curvature computing procedures for fluid-flow problems[J]. Journal of Engineering for Power,1967,89(4): 478-490. doi: 10.1115/1.3616716
    [3] MARSH H. A digital computer program for the through-flow fluid mechanics in an arbitrary turbomachine using a matrix method: Reports and Memoranda No.3509[R]. London: Aeronautical Research Council,1968.
    [4] 袁宁,顾中华,冯国泰,等. 轴流压气机三种S2流面计算程序的比较[J]. 燃气涡轮试验与研究,1998,11(1): 33-38. YUAN Ning,GU Zhonghua,FENG Guotai,et al. Comparison of three programs for calculating S2 flow surface of axial compressor[J]. Gas Turbine Experiment and Research,1998,11(1): 33-38. (in Chinese

    YUAN Ning, GU Zhonghua, FENG Guotai, et al. Comparison of three programs for calculating S2 flow surface of axial compressor[J]. Gas Turbine Experiment and Research, 1998, 11(1): 33-38. (in Chinese)
    [5] DAVIS W R,MILLAR D A J. A comparison of the matrix and streamline curvature methods of axial flow turbomachinery analysis,from a user’s point of view[J]. Journal of Engineering for Power,1975,97(4): 549-558. doi: 10.1115/1.3446059
    [6] 杨金广,王春雪,王大磊,等. 基于时间推进的通流计算方法: 现状及展望[J]. 航空学报,2017,38(9): 58-70. YANG Jinguang,WANG Chunxue,WANG Dalei,et al. Time marching based throughflow method: current status and future development[J]. Acta Aeronautica et Astronautica Sinica,2017,38(9): 58-70. (in Chinese

    YANG Jinguang, WANG Chunxue, WANG Dalei, et al. Time marching based throughflow method: current status and future development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9): 58-70. (in Chinese)
    [7] 阎超. 计算流体力学方法及应用[M]. 北京: 北京航空航天大学出版社,2006. YAN Chao. Computational fluid dynamics method and its application[M]. Beijing: Beijing University of Aeronautics & Astronautics Press,2006. (in Chinese

    YAN Chao. Computational fluid dynamics method and its application[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2006. (in Chinese)
    [8] 陈海生,谭春青. 叶轮机械内部流动研究进展[J]. 机械工程学报,2007,43(2): 1-12. CHEN Haisheng,TAN Chunqing. Review of investigation into internal flow of turbomachinery[J]. Journal of Mechanical Engineering,2007,43(2): 1-12. (in Chinese doi: 10.3901/JME.2007.02.001

    CHEN Haisheng, TAN Chunqing. Review of investigation into internal flow of turbomachinery[J]. Journal of Mechanical Engineering, 2007, 43(2): 1-12. (in Chinese) doi: 10.3901/JME.2007.02.001
    [9] SPURR A. The prediction of 3D transonic flow in turbomachinery using a combined throughflow and blade-to-blade time marching method[J]. International Journal of Heat and Fluid Flow,1980,2(4): 189-199. doi: 10.1016/0142-727X(80)90013-2
    [10] 袁宁,张振家,顾中华,等. 涡喷发动机压气机三种 S2 流面计算程序的比较[J]. 推进技术,1998,19(1): 50-56. YUAN Ning,ZHANG Zhenjia,GU Zhonghua,et al. Comparison of three programs for calculating S2 streamsurface of turbojet compressor[J]. Journal of Propulsion Technology,1998,19(1): 50-56. (in Chinese

    YUAN Ning, ZHANG Zhenjia, GU Zhonghua, et al. Comparison of three programs for calculating S2 streamsurface of turbojet compressor[J]. Journal of Propulsion Technology, 1998, 19(1): 50-56. (in Chinese)
    [11] DAWES W N. Towards improved throughflow capability: the use of 3D viscous flow solvers in a multistage environment[R]. Brussels,Belgium: ASME Gas Turbine and Aeroengine Congress and Exposition,1990.
    [12] BARALON S,ERIKSSON L E,HÅLL U. Validation of a throughflow time-marching finite-volume solver for transonic compressors[R]. Stockholm,Sweden: ASME International Gas Turbine and Aeroengine Congress & Exhibition,1998.
    [13] ROSA TADDEI S,LAROCCA F. CFD-based analysis of multistage throughflow surfaces with incidence[J]. Mechanics Research Communications,2013,47: 6-10. doi: 10.1016/j.mechrescom.2012.10.005
    [14] LI D Y,CHEN H L,SONG Y P,et al. Numerical investigation of two-phase wet steam flow with spontaneous condensation based on Euler S2 calculation method[R]. Montreal,Canada: ASME Turbo Expo 2015: Turbine Technical Conference and Exposition,2015.
    [15] IVANOV M,KHARKOVSKI S V,MAGERRAMOVA L,et al. Interdisciplinary complex design of modern high and low pressure turbines[R]. Brisbane,Australia: 28th International Congress of the Aeronautical Sciences,2012.
    [16] YAO Z,HIRSCH C. Throughflow model using 3D Euler or Navier-Stokes solvers[R]. 湖北 宜昌: 中国工程热物理学会热机气动热力学学术会议,1995.
    [17] DAMLE S V,DANG T Q,REDDY D R. Throughflow method for turbomachines applicable for all flow regimes[J]. Journal of Turbomachinery,1997,119(2): 256-262. doi: 10.1115/1.2841108
    [18] SIMON J F. Contribution to throughflow modelling for axial flow turbomachines[D]. Liege: University of Liege,2007.
    [19] ADAMCZYK J J. Model equation for simulating flows in multistage turbomachinery[R]. NASA TM-86869,1984.
    [20] NIGMATULLIN R Z,IVANOV M J. The mathematical models of flow passage for gas turbine engines and their components: AGARD-LS-198[R]. Paris: Advisory Group for Aerospace Research and Development,1994.
    [21] IVANOV M,NIGMATULLIN R. Interconnected multi-level design of gas turbine elements: AIAA 2003-1215 [R]. Reno,Nevada,US: AIAA,2003.
    [22] 王仲奇. 透平机械三元流动计算及其数学和气动力学基础[M]. 北京: 机械工业出版社,1983. WANG Zhongqi. Three-dimensional flow calculation of turbomachinery and its mathematical and aerodynamic basis[M]. Beijing: China Machine Press,1983. (in Chinese

    WANG Zhongqi. Three-dimensional flow calculation of turbomachinery and its mathematical and aerodynamic basis[M]. Beijing: China Machine Press, 1983. (in Chinese)
    [23] MOFFITT T,SZANCA E M,WHITNEY W,et al. Design and cold-air test of single-stage uncooled turbine with high work output[R]. NASA TP-1680,1980.
    [24] BIDER B,MONROE D E,SZANCA E M,et al. Cold-air investigation of a turbine for high- temperature-engine application I: turbine design and overall stator performance[R]. NASA TN D-3751,1967.
    [25] HOHEISEL H. Test cases for computation of internal flows in aero engine components[R]. AGARD-AR-275,1990.
    [26] NOERA F,SATTA A. Through flow calculation in axial flow turbines using a quasi-orthogonal solver[R]. Stockholm,Sweden: ASME International Gas Turbine & Aeroengine Congress and Exhibition,1998.
    [27] 黄庆南. 航空发动机设计手册:第10册 涡轮[M]. 北京: 航空工业出版社,2001.
    [28] GLASSMAN A. Blading models for TURBAN and CSPAN turbomachine design codes[R]. NASA CR-191164,1993.
    [29] 王松涛,袁宁,王仲奇,等. 具有TVD性质的三阶精度GODUNOV格式在粘性流场计算中的应用[J]. 工程热物理学报,1999,20(3): 299-303. WANG Songtao,YUAN Ning,WANG Zhongqi,et al. Application of third order Godunov scheme with TVD property to viscous flow field[J]. Journal of Engineering Thermophysics,1999,20(3): 299-303. (in Chinese

    WANG Songtao, YUAN Ning, WANG Zhongqi, et al. Application of third order Godunov scheme with TVD property to viscous flow field[J]. Journal of Engineering Thermophysics, 1999, 20(3): 299-303. (in Chinese)
    [30] 李得英. Euler方程S2流面计算方法及透平内蒸汽自发凝结流动数值研究[D]. 哈尔滨: 哈尔滨工业大学,2016. LI Deying. Numerical research on the Euler S2 stream surface calculation method and the steam flow with spontaneous condensation in steam turbine[D]. Harbin: Harbin Institute of Technology,2016. (in Chinese

    LI Deying. Numerical research on the Euler S2 stream surface calculation method and the steam flow with spontaneous condensation in steam turbine[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
    [31] 傅德薰,马延文. 计算流体力学[M]. 北京: 高等教育出版社,2002. FU Dexun,MA Yanwen. Computational fluid dynamics[M]. Beijing: Higher Education Press,2002. (in Chinese

    FU Dexun, MA Yanwen. Computational fluid dynamics[M]. Beijing: Higher Education Press, 2002. (in Chinese)
    [32] IVANOV M Y,KRUPA V G,NIGMATULLIN R Z. A high-accuracy version of Godunov’s implicit scheme for integrating the Navier-Stokes equations[J]. USSR Computational Mathematics and Mathematical Physics,1989,29(3): 170-179. doi: 10.1016/0041-5553(89)90164-X
    [33] LI D Y,SONG Y P,FU Y F,et al. Numerical investigation of equilibrium wet steam flow property based on S2 calculation code[R]. Dusseldorf,Germany: ASME Turbo Expo 2014: Turbine Technical Conference and Exposition,2014
    [34] 昌中宏,唐海龙. 航空发动机整机二维气动热力数值模拟[J]. 推进技术,2012,33(3): 333-337. CHANG Zhonghong,TANG Hailong. Aerothermodynamic numerical simulation of integrated aero engine system[J]. Journal of Propulsion Technology,2012,33(3): 333-337. (in Chinese

    CHANG Zhonghong, TANG Hailong. Aerothermodynamic numerical simulation of integrated aero engine system[J]. Journal of Propulsion Technology, 2012, 33(3): 333-337. (in Chinese)
    [35] 石靖,刘冬华,周颖,等. 高亚音速涡轮平面叶栅损失模型的对比分析[R]. 湖北 宜昌: 中国航空学会第十三届叶轮机学术讨论会,2005.
    [36] BALJE’O E,BINSLEY R L. Axial turbine performance evaluation: Part A loss-geometry relationships[J]. Journal of Engineering for Power,1968,90(4): 341-348. doi: 10.1115/1.3609211
    [37] SULLEREY R K,KUMAR S. A study of axial turbine loss models in a streamline curvature computing scheme[J]. Journal of Engineering for Gas Turbines and Power,1984,106(3): 591-597. doi: 10.1115/1.3239611
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  116
  • HTML浏览量:  57
  • PDF量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-17
  • 网络出版日期:  2024-03-14

目录

    /

    返回文章
    返回