留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋翼/涡轴发动机动力涡轮联合变转速对性能影响研究

伊卫林 崔志伟 郑霆锴

伊卫林, 崔志伟, 郑霆锴. 旋翼/涡轴发动机动力涡轮联合变转速对性能影响研究[J]. 航空动力学报, 2024, 39(9):20220077 doi: 10.13224/j.cnki.jasp.20220077
引用本文: 伊卫林, 崔志伟, 郑霆锴. 旋翼/涡轴发动机动力涡轮联合变转速对性能影响研究[J]. 航空动力学报, 2024, 39(9):20220077 doi: 10.13224/j.cnki.jasp.20220077
YI Weilin, CUI Zhiwei, ZHENG Tingkai. Effect investigation of combined variable speed of rotor/turboshaft engine power turbine on the performance[J]. Journal of Aerospace Power, 2024, 39(9):20220077 doi: 10.13224/j.cnki.jasp.20220077
Citation: YI Weilin, CUI Zhiwei, ZHENG Tingkai. Effect investigation of combined variable speed of rotor/turboshaft engine power turbine on the performance[J]. Journal of Aerospace Power, 2024, 39(9):20220077 doi: 10.13224/j.cnki.jasp.20220077

旋翼/涡轴发动机动力涡轮联合变转速对性能影响研究

doi: 10.13224/j.cnki.jasp.20220077
基金项目: 国家自然科学基金(52176035)
详细信息
    作者简介:

    伊卫林(1978-),男,副教授、博士生导师,博士,主要从事航空发动机总体及叶轮机械气动热力学方面的研究

  • 中图分类号: V212.5

Effect investigation of combined variable speed of rotor/turboshaft engine power turbine on the performance

  • 摘要:

    分别建立了考虑飞行工况条件的旋翼最优转速及功率需求计算模型、动力涡轮可变速的涡轴发动机性能分析模型,以此发展了旋翼/涡轴发动机转速联合优化分析方法及程序,并以UH60A直升机及T700涡轴发动机为对象进行了典型飞行包线下的性能分析。结果表明:动力涡轮转速可变后压气机、高压涡轮稳态匹配工作线变化不大,但动力涡轮自身等熵效率随转速降低有明显下降,其性能需进一步提升。与定转速运行模式相比,完成典型飞行任务后,旋翼/涡轴发动机协同变速运行可使得总耗油量明显降低约5%。

     

  • 图 1  联合仿真计算流程图

    Figure 1.  Flowchart of co-simulation calculation

    图 2  前进比与叶片载荷系数的关系[20]

    Figure 2.  Relation between advance ratio and blade loading[20]

    图 3  最佳旋翼转速和飞行速度的关系(200 m)

    Figure 3.  Relationship between optimal rotor speed and flight speed (200 m)

    图 4  T700发动机模型

    Figure 4.  T700 engine model

    图 5  仿真结果与试验数据对比

    Figure 5.  Simulation results are compared with the experimental data

    图 6  旋翼-变速箱-发动机联合仿真模型

    Figure 6.  Rotor-transmission-engine co-simulation model

    图 7  旋翼最优转速与需求功率关系

    Figure 7.  Relationship between optimal rotor speed and power demand

    图 8  转速变化对总耗油量的影响

    Figure 8.  Effect of speed change on total fuel consumption

    图 9  各工况转速变化对动力涡轮性能的影响

    Figure 9.  Effect of speed variation on power turbine performance under different working conditions

    图 10  各工况转速变化对压气机性能的影响

    Figure 10.  Effect of speed variation on compressor performance under different working conditions

    图 11  各工况转速变化对高压涡轮性能的影响

    Figure 11.  Effect of speed variation on high pressure turbine performance under different working conditions

    表  1  UH-60A黑鹰直升机参数[7]

    Table  1.   UH-60A black hawk helicopter parameters[7]

    参数类型及单位数值
    主旋翼半径R/m8.178
    尾翼半径Rtr /m1.676
    主旋翼翼弦/m0.5273
    尾翼翼弦/m0.2469
    主旋翼叶片数4
    尾翼叶片数4
    等效平板面积比(f/A0.016
    平均叶片截面阻力系数Cd00.012
    主旋翼与尾翼距离L/m9.93
    主旋翼常规转速ω/(rad/s)27
    尾翼与主旋翼速比α4.6
    直升机质量W/N71168
    飞行速度范围V/(m/s)0/90
    旋翼实度σ(叶片实际面积/盘面积)0.082
    下载: 导出CSV

    表  2  发动机模型设计参数[7]

    Table  2.   Engine model design parameters[7]

    模型设计参数 数值
    空气流量/(kg/s) 4.612
    进气总压恢复系数 0.988
    压气机压比 17.5
    压气机效率 0.821
    压气机/高压涡轮转速/(r/min) 44700
    燃烧室总压损失 0.04
    燃烧室效率 0.985
    燃油流量/(kg/s) 0.101
    高压涡轮效率 0.85
    高压涡轮落压比 4.283
    动力涡轮设计转速/(r/min) 20900
    动力涡轮效率 0.85
    动力涡轮落压比 3.3897
    下载: 导出CSV

    表  3  设计点计算参数

    Table  3.   Design point calculation parameters

    设计点S2S3S4S5S6S7
    焓值/(kJ/kg)288.18735.311624.711187.10903.80903.80
    总温/K288.17721.111454.441098.33857.22857.22
    总压/Pa10001017644001694000395300116000114400
    动力涡轮输出功率/kW1343
    耗油率SFC/(kg/kWh)0.2708
    总热效率0.3084     
    下载: 导出CSV

    表  4  UH-60A飞行任务参数

    Table  4.   UH-60A mission parameters

    任务区间 飞行距离/时间/(km/s) 海拔高度/m
    起飞爬升 0/10 0~100
    加速(0~90 m/s) 0.6/13.5 100
    前飞和爬升 9.5/107 100~1500
    巡航(84 m/s) 100/1190 1500
    前飞和爬升 5/62 1500~3000
    巡航(70 m/s) 314/4490 3000
    前飞和下降 20/578 3000~10
    悬停 0/300 10
    降落 0/10 10~0
    总计 449.1 km/6760.5 s
    下载: 导出CSV
  • [1] PROUTY R W. Should we consider variable rotor speeds[J]. Vertiflite,2004,50(4): 24-27.
    [2] 韩东. 变转速旋翼直升机性能及配平研究[J]. 航空学报,2013,34(6): 1241-1248. HAN Dong. Study on the performance and trim of helicopters with variable speed rotors[J]. Acta Aeronautica et Astronautica Sinica,2013,34(6): 1241-1248. (in Chinese

    HAN Dong. Study on the performance and trim of helicopters with variable speed rotors[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6): 1241-1248. (in Chinese)
    [3] JOHNSON W,YAMAUCHI G K,WATTS M E. NASA heavy lift rotorcraft systems investigation[R]. NASA/TP-2005-213467,2005.
    [4] SNYDER C A,ACREE C W. Preliminary assessment of variable speed power turbine technology on civil tiltrotor size and performance[R]. ARC-E-DAA-TN5287,2012.
    [5] ACREE C,YEO H,SINSAY J. Performance optimization of the NASA large civil tiltrotor[R]. London,UK: International Powered Lift Conference,2008.
    [6] SNYDER C A,THURMAN D R. Effects of gas turbine component performance on engine and rotary wing vehicle size and performance[R]. NASA/TM-2010-216907,2010.
    [7] SNYDER C A,THURMAN D R. Gas turbine characteristics for a large civil tilt-rotor (LCTR)[R]. NASA/TM-2010-216089,2010.
    [8] MISTÉ G A, BENINI E. Performance of a turboshaft engine for helicopter applications operating at variable shaft speed[C]//Proceedings of ASME 2012 Gas Turbine India Conference, Mumbai, Maharashtra, India:ASME, 2013: 701-715.
    [9] MISTÉ G A,BENINI E,GARAVELLO A,et al. A methodology for determining the optimal rotational speed of a variable RPM main rotor/turboshaft engine system[J]. Journal of the American Helicopter Society,2015,60(3): 1-11.
    [10] MISTÉ G A, PELLEGRINI A, BENINI E. Variable speed power turbine preliminary design optimization for rotorcraft applications[R].Barcelona, Spain: 11th World Congress on Computational Mechanics (WCCM XI),5th European Conference on Computational Mechanics (ECCM V),6th European Conference on Computational Fluid Dynamics (ECFD VI), 2014.
    [11] DANGELO M. Wide speed range turboshaft study[R]. NASA-CR-198380, 1995.
    [12] 张绍文,潘尚能,罗建桥. 高速旋翼机变转速动力涡轮的发展[J]. 国际航空,2015(11): 65-67. ZHANG Shaowen,PAN Shangneng,LUO Jianqiao. Development of variable speed power turbines for high speed rotorcraft[J]. International Aviation,2015(11): 65-67. (in Chinese

    ZHANG Shaowen, PAN Shangneng, LUO Jianqiao. Development of variable speed power turbines for high speed rotorcraft[J]. International Aviation, 2015(11): 65-67. (in Chinese)
    [13] HENDRICKS E S,JONES S M,GRAY J S. Design optimization of a vari-able-speed power-turbine:AIAA 2014-3445[R]. Cleveland, US:AIAA, 2014.
    [14] MCVETTA A B,GIEL P W,WELCH G E. Aerodynamic measurements of a variable-speed power-turbine blade section in a transonic turbine cascade at low inlet turbulence: GT2013-94695[R]. San Antonio,Texas,US: ASME,2013.
    [15] MCVETTA A B, GIEL P W, WELCH G E. Aerodynamic investigation of incidence angle effects in a large scale transonic turbine cascade: AIAA 2012-3879[R]. Reston,Virigina: AIAA,2012.
    [16] AMERI A A,GIEL P W,FLEGEL A B. Simulation of VSPT experimental cascade under high and low free-stream turbulence conditions: AIAA 2014-3935 [R]. Reston,Virginia: AIAA,2014.
    [17] ROBUCK M,WILKERSON J,MACIOLEK R,et al. The effect of rotor cruise tip speed,engine technology and engine/drive system RPM on the NASA large civil tiltrotor (LCTR2) size and performance[R]. NASA/CR–2013-216593,2012.
    [18] ROBUCK M,WILKERSON J,ZHANG Y,et al. Design study of propulsion and drive systems for the large civil tiltrotor (LCTR2) rotorcraft[R]. NASA/TM-2013-218102,2014.
    [19] ROBUCK M,ZHANG Y. Engine power turbine and propulsion pod arrangement study[R]. NASA/CR-2014-216661,2014.
    [20] DIOTTAVIO J,FRIEDMANN D. Operational benefits of an optimal,widely variable speed rotor[C]// Phoenix,US: American Helicopter Society International,American Helicopter Society 66th Annual Forum Proceedings. 2010: 11-13.
    [21] 张雅铭. 直升机需用功率计算方法研究[J]. 直升机技术,2003(1): 1-5. ZHANG Yaming. Research of computing method for helicopter required power[J]. Helicopter Technique,2003(1): 1-5. (in Chinese

    ZHANG Yaming. Research of computing method for helicopter required power[J]. Helicopter Technique, 2003(1): 1-5. (in Chinese)
    [22] JEFFRYES W C,THOMAS M L. Toolbox for the modeling and analysis of thermodynamic systems (T-MATS) user’s guide[R]. NASA TM-2014-216638,2014.
    [23] BALLIN M G. A high fidelity real-time simulation of a small turboshaft engine[M]. Moffett Field,Calif. : National Aeronautics and Space Administration,Ames Research Center,1988.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  34
  • HTML浏览量:  20
  • PDF量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-22
  • 网络出版日期:  2024-04-10

目录

    /

    返回文章
    返回