留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

存在物理约束的时变转动惯量航天器姿态控制

殷春武 甘婷 徐琳

殷春武, 甘婷, 徐琳. 存在物理约束的时变转动惯量航天器姿态控制[J]. 航空动力学报, 2024, 39(1):20220124 doi: 10.13224/j.cnki.jasp.20220124
引用本文: 殷春武, 甘婷, 徐琳. 存在物理约束的时变转动惯量航天器姿态控制[J]. 航空动力学报, 2024, 39(1):20220124 doi: 10.13224/j.cnki.jasp.20220124
YIN Chunwu, GAN Ting, XU Lin. Adaptive attitude control with physical constraint and time-varying rotational inertia[J]. Journal of Aerospace Power, 2024, 39(1):20220124 doi: 10.13224/j.cnki.jasp.20220124
Citation: YIN Chunwu, GAN Ting, XU Lin. Adaptive attitude control with physical constraint and time-varying rotational inertia[J]. Journal of Aerospace Power, 2024, 39(1):20220124 doi: 10.13224/j.cnki.jasp.20220124

存在物理约束的时变转动惯量航天器姿态控制

doi: 10.13224/j.cnki.jasp.20220124
基金项目: 西安建筑科技大学青年基金(QN1727); 陕西省教育厅专项科研计划项目(20JK0728)
详细信息
    作者简介:

    殷春武(1982-),男,副教授,博士,主要研究方向为航天器姿态控制、机器人控制。E-mail:yincwxa2013@mail.nwpu.edu.cn

    通讯作者:

    徐琳(1978-) ,男,讲师,博士,主要研究方向为交通运输工程。E-mail:3306035@qq.com

  • 中图分类号: V448.2

Adaptive attitude control with physical constraint and time-varying rotational inertia

  • 摘要:

    对存在角速度和控制输入有界的快速机动航天器姿态控制问题,设计了一种自适应双环姿态跟踪控制器。将虚拟有界角速度作为运动学方程的虚拟控制输入,使姿态控制问题降阶为角速度跟踪问题;构建递归自适应算法估计时变转动惯量及其微分,并基于障碍李亚普诺夫函数和线性回归算子,设计了角速度跟踪误差有界的变增益自适应姿态控制器。结果表明:该控制策略能使抓捕非合作目标航天器的姿态呈指数收敛到期望轨迹,且收敛轨迹不受外部干扰和抓捕瞬间的强干扰影响;在整个控制过程中,航天器的角速度小于0.4 rad/s,控制力矩小于10 N·m,满足了航天器对角速度和控制输入有界的物理限制。

     

  • 图 1  外部干扰力矩特性

    Figure 1.  Disturbance torque characteristics

    图 2  控制力矩限制示意图

    Figure 2.  Diagram of control torque limit

    图 3  姿态角误差变化趋势

    Figure 3.  Trend of attitude angle error

    图 4  三轴控制力矩曲线

    Figure 4.  Trend of control torque

    图 5  ${\boldsymbol{\omega }}$${{\boldsymbol{\omega }}_{\text{v}}}$轨迹曲线

    Figure 5.  Trends of ${\boldsymbol{\omega }}$ and ${{\boldsymbol{\omega }}_{\text{v}}}$

  • [1] 雷灏,陈柏屹,刘燕斌,等. 推力协同的大柔性飞行器纵向姿态控制[J]. 航空动力学报,2021,36(10): 2207-2217. doi: 10.13224/j.cnki.jasp.20200457

    LEI Hao,CHEN Boyi,LIU Yanbin,et al. Longitudinal attitude control for very flexible aircraft with thrust cooperation[J]. Journal of Aerospace Power,2021,36(10): 2207-2217. (in Chinese) doi: 10.13224/j.cnki.jasp.20200457
    [2] 林子杰,陆国平,吕旺,等. 基于事件驱动的航天器姿态自适应跟踪控制[J]. 航天控制,2021,39(1): 32-39. doi: 10.3969/j.issn.1006-3242.2021.01.006

    LIN Zijie,LU Guoping,LÜ Wang,et al. Adaptive event-triggered control for spacecraft attitude tracking[J]. Aerospace Control,2021,39(1): 32-39. (in Chinese) doi: 10.3969/j.issn.1006-3242.2021.01.006
    [3] LEE K W,SINGH S N. Quaternion-based adaptive attitude control of asteroid-orbiting spacecraft via immersion and invariance[J]. Acta Astronautica,2020,167: 164-180. doi: 10.1016/j.actaastro.2019.10.031
    [4] 周湛杰,王新生,王岩. 基于模糊自适应算法的航天器姿态控制[J]. 电机与控制学报,2019,23(2): 123-128. doi: 10.15938/j.emc.2019.02.016

    ZHOU Zhanjie,WANG Xinsheng,WANG Yan. Spacecraft attitude control based on fuzzy adaptive algorithm[J]. Electric Machines and Control,2019,23(2): 123-128. (in Chinese) doi: 10.15938/j.emc.2019.02.016
    [5] ZOU Anmin,DEV KUMAR K,HOU Zengguang. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks[J]. IEEE Transactions on Neural Networks,2010,21(9): 1457-1471. doi: 10.1109/TNN.2010.2050333
    [6] 殷春武,佟威,何波. 基于极限学习机的有限时间自适应姿态控制[J]. 航天控制,2018,36(5): 30-36. doi: 10.16804/j.cnki.issn1006-3242.2018.05.006

    YIN Chunwu,TONG Wei,HE Bo. Extreme learning machine-based finite-time adaptive attitude control[J]. Aerospace Control,2018,36(5): 30-36. (in Chinese) doi: 10.16804/j.cnki.issn1006-3242.2018.05.006
    [7] HU Qinglei,XIAO Li,WANG Chenliang. Adaptive fault-tolerant attitude tracking control for spacecraft with time-varying inertia uncertainties[J]. Chinese Journal of Aeronautics,2019,32(3): 674-687. doi: 10.1016/j.cja.2018.12.015
    [8] YEH F K. Sliding-mode adaptive attitude controller design for spacecrafts with thrusters[J]. IET Control Theory and Applications,2010,4(7): 1254-1264. doi: 10.1049/iet-cta.2009.0026
    [9] THAKUR D,SRIKANT S,AKELLA M R. Adaptive attitude-tracking control of spacecraft with uncertain time-varying inertia parameters[J]. Journal of Guidance, Control and Dynamics,2015,38(1): 41-52. doi: 10.2514/1.G000457
    [10] FORBES J R. Attitude control with active actuator saturation prevention[J]. Acta Astronautica,2015,107: 187-195. doi: 10.1016/j.actaastro.2014.10.006
    [11] ZHANG Chao,MA Guangfu,SUN Yanchao,et al. Observer-based prescribed performance attitude control for flexible spacecraft with actuator saturation[J]. ISA Transactions,2019,89: 84-95. doi: 10.1016/j.isatra.2018.12.027
    [12] YU Bo,DU Haibo,DING Lijian,et al. Neural network-based robust finite-time attitude stabilization for rigid spacecraft under angular velocity constraint[J]. Neural Computing and Applications,2022,34(7): 5107-5117. doi: 10.1007/s00521-021-06056-w
    [13] HU Qinglei,LI Bo,ZHANG Youmin. Robust attitude control design for spacecraft under assigned velocity and control constraints[J]. ISA Transactions,2013,52(4): 480-493. doi: 10.1016/j.isatra.2013.03.003
    [14] 殷春武. 带微分观测器的双环姿态跟踪控制[J]. 北京理工大学学报,2018,38(10): 1073-1078, 1084. doi: 10.15918/j.tbit1001-0645.2018.10.014

    YIN Chunwu. Dual-loop attitude tracking control with differential observer[J]. Transactions of Beijing Institute of Technology,2018,38(10): 1073-1078, 1084. (in Chinese) doi: 10.15918/j.tbit1001-0645.2018.10.014
    [15] XU Jianxin,JIN Xu. State-constrained iterative learning control for a class of MIMO systems[J]. IEEE Transactions on Automatic Control,2013,58(5): 1322-1327. doi: 10.1109/TAC.2012.2223353
    [16] TAO G. A simple alternative to the Barbalat lemma[J]. IEEE Transactions on Automatic Control,1997,42(5): 698. doi: 10.1109/9.580878
    [17] LUO Wencheng,CHU Y C,LING K V. Inverse optimal adaptive control for attitude tracking of spacecraft[J]. IEEE Transactions on Automatic Control,2005,50(11): 1639-1654. doi: 10.1109/TAC.2005.858694
    [18] YUAN Ruyi,TAN Xiangmin,FAN Guoliang,et al. Robust adaptive neural network control for a class of uncertain nonlinear systems with actuator amplitude and rate saturations[J]. Neurocomputing,2014,125: 72-80. doi: 10.1016/j.neucom.2012.09.036
  • 加载中
图(5)
计量
  • 文章访问数:  84
  • HTML浏览量:  37
  • PDF量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-11
  • 网络出版日期:  2023-08-09

目录

    /

    返回文章
    返回