留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CST的三维机翼气动结构解析参数化建模与优化方法

杨予成 粟华 龚春林 谷良贤 丁轩鹤 王子一

杨予成, 粟华, 龚春林, 等. 基于CST的三维机翼气动结构解析参数化建模与优化方法[J]. 航空动力学报, 2024, 39(4):20220289 doi: 10.13224/j.cnki.jasp.20220289
引用本文: 杨予成, 粟华, 龚春林, 等. 基于CST的三维机翼气动结构解析参数化建模与优化方法[J]. 航空动力学报, 2024, 39(4):20220289 doi: 10.13224/j.cnki.jasp.20220289
YANG Yucheng, SU Hua, GONG Chunlin, et al. Analytical aero-structural modeling and optimization method of three-dimensional wing based on CST[J]. Journal of Aerospace Power, 2024, 39(4):20220289 doi: 10.13224/j.cnki.jasp.20220289
Citation: YANG Yucheng, SU Hua, GONG Chunlin, et al. Analytical aero-structural modeling and optimization method of three-dimensional wing based on CST[J]. Journal of Aerospace Power, 2024, 39(4):20220289 doi: 10.13224/j.cnki.jasp.20220289

基于CST的三维机翼气动结构解析参数化建模与优化方法

doi: 10.13224/j.cnki.jasp.20220289
基金项目: 基础科研计划(JCKY2020204B016)
详细信息
    作者简介:

    杨予成(1998-),男,硕士生,主要从事飞行器设计与多学科优化方面研究

    通讯作者:

    粟华(1985-),男,副研究员,博士,主要从事飞行器设计与多学科优化技术方面研究。E-mail:su@nwpu.edu.cn

  • 中图分类号: V214.19

Analytical aero-structural modeling and optimization method of three-dimensional wing based on CST

  • 摘要:

    针对概念设计阶段机翼设计需要大范围探索设计空间并进行气动结构一体化设计的需求,提出一种基于类别/形状变换函数(class-shape function transformation, CST)的三维机翼气动结构解析参数化建模与优化方法。在二维CST基础上,推导三维CST参数化几何模型的解析函数形式,通过网格自适应离散与结构特征提取技术建立了三维机翼的气动和结构解析参数化模型,能够同时支持包括机翼几何构型、结构布局、结构尺寸、材料属性等参数的气动结构一体化快速建模与优化求解,具备几何模型大范围参数化以及气动、结构模型的建模过程自动化能力。采用该方法对某大展弦比机翼开展气动结构一体化优化设计,对比固定结构布局优化方案,优化结果梁由2个减至1个,翼肋由20个减至15个,质量相比减少26.1%。

     

  • 图 1  基本曲面框架

    Figure 1.  Frame of basic surface

    图 2  部件参数化外形

    Figure 2.  Parametric shape of component

    图 3  参数化气动网格模型

    Figure 3.  Parametric aerodynamic mesh model

    图 4  网格修正流程

    Figure 4.  Mesh correction process

    图 5  气动网格修正前后对比

    Figure 5.  Comparison of before and after aerodynamic mesh correction

    图 6  机翼结构参数化模型

    Figure 6.  Parametric model of the wing structure

    图 7  气动结构一体化优化流程

    Figure 7.  Aero-structural integration optimization process

    图 8  DPW-W1机翼参数化气动模型

    Figure 8.  Parametric aerodynamic model of DPW-W1 wing

    图 9  DPW-W1翼型压力分布对比

    Figure 9.  Pressure distribution comparison of DPW-W1 wing

    图 10  DPW-W1机翼参数化气动结构模型

    Figure 10.  Parametric aero-structural model of DPW-W1 wing

    图 11  气动结构优化Mises应力云图

    Figure 11.  Contours of Mises stress for aero-structural optimization

    图 12  优化前后机翼截面对比

    Figure 12.  Comparison of pre- and post-optimized wing sections

    图 13  变布局优化后的机翼结构布局

    Figure 13.  Variable layout optimized wing structure layout

    图 14  变布局优化后机翼Mises应力云图

    Figure 14.  Contours of Mises stress for variable structural layout aero-structural optimization

    表  1  基本曲面设计变量

    Table  1.   Design variables of basic surface

    设计变量 参数
    翼根截面形状控制因子 $ {N_{11}} $,$ {N_{12}} $
    翼梢截面形状控制因子 $ {N_{21}} $,$ {N_{22}} $
    法向形状控制因子 ${M_1}$,${M_2}$
    展向形状控制因子 ${T_1}$,${T_2}$
    表面权重因子 $ {{{b}}_{i,j}} $
    展向权重因子 $ {{{b}}_t} $
    下载: 导出CSV

    表  2  气动结果对比

    Table  2.   Comparison of aerodynamic results

    参数 修正前 修正后 文献[24]
    $ {C_L} $ 数值 0.46873 0.48262 0.48684
    与文献[24]的
    误差/%
    −3.72 −0.87
    $ {C_D} $ 数值 0.01819 0.01978 0.02098
    与文献[24]的
    误差/%
    −13.3 −5.72
    $ {C_M} $ 数值 −0.06754 −0.07210 −0.06970
    与文献[24]的
    误差/%
    −3.10 3.44
    $ L/D $ 数值 25.7686 24.3994 23.21
    与文献[24]的
    误差/%
    11.02 5.12
    下载: 导出CSV

    表  3  优化结果对比

    Table  3.   Comparison of optimization results

    参数 优化前 优化后
    固定结构布局 可变结构布局
    $ {C_L} $ 0.40348 0.40015 0.40001
    $ {C_D} $ 0.01333 0.01311 0.01316
    最大位移变形/m 2.66198 2.75547 2.73183
    最大扭转变形/m 0.070146 0.067274 0.066811
    结构质量/kg 20412.7 18849.5 13926.2
    下载: 导出CSV
  • [1] GURUSWAMY G P,OBAYASHI S. Study on the use of high-fidelity methods in aeroelastic optimization[J]. Journal of Aircraft,2004,41(3): 616-619. doi: 10.2514/1.843
    [2] 胡嘉欣,芮姝,高瑞朝,等. 飞行器结构布局与尺寸混合优化方法[J]. 航空学报,2022,43(5): 225363. HU Jiaxin,RUI Shu,GAO Ruichao,et al. Hybrid optimization method for structural layout and size of flight vehicles[J]. Acta Aeronautica et Astronautica Sinica,2022,43(5): 225363. (in Chinese

    HU Jiaxin, RUI Shu, GAO Ruichao, et al. Hybrid optimization method for structural layout and size of flight vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 225363. (in Chinese)
    [3] BENAOUALI A,KACHEL S. An automated CAD/CAE integration system for the parametric design of aircraft wing structures[J]. Journal of Theoretical and Applied Mechanics,2017,55(2): 447-459.
    [4] 陈婉春,孙刚. 基于气动特性翼型参数化方法的适用性研究[J]. 力学季刊,2015,36(4): 678-689. CHEN Wanchun,SUN Gang. Applicability of airfoil parameterization methods based on aerodynamic performance[J]. Chinese Quarterly of Mechanics,2015,36(4): 678-689. (in Chinese

    CHEN Wanchun, SUN Gang. Applicability of airfoil parameterization methods based on aerodynamic performance[J]. Chinese Quarterly of Mechanics, 2015, 36(4): 678-689. (in Chinese)
    [5] HICKS R M,HENNE P A. Wing design by numerical optimization[J]. Journal of Aircraft,1978,15(7): 407-412. doi: 10.2514/3.58379
    [6] FUJII K,DULIKRAVICH G S. Recent development of aerodynamic design methodologies[M]. Wiesbaden,Germany:Vieweg+Teubner Verlag,1999.
    [7] VECCHIA P D,DANIELE E,DʼAMATO E. An airfoil shape optimization technique coupling PARSEC parameterization and evolutionary algorithm[J]. Aerospace Science and Technology,2014,32(1): 103-110. doi: 10.1016/j.ast.2013.11.006
    [8] LEUNG T,ZINGG D. Single- and multi-point aerodynamic shape optimization using a parallel newton-krylov approach[R]. AIAA 2009-3803,2009.
    [9] BECKER G,SCHÄFER M,JAMESON A. An advanced NURBS fitting procedure for post-processing of grid-based shape optimizations[R]. AIAA2011-891,2011.
    [10] VALENCIA E,ALULEMA V,HIDALGO V,et al. A CAD-free methodology for volume and mass properties computation of 3-D lifting surfaces and wing-box structures[J]. Aerospace Science and Technology,2021,108: 106378. doi: 10.1016/j.ast.2020.106378
    [11] KULFAN B M. Recent extensions and applications of the ‘CST’ universal parametric geometry representation method[J]. The Aeronautical Journal,2010,114(1153): 157-176. doi: 10.1017/S0001924000003614
    [12] KULFAN B M,BUSSOLETTI J E. “Fundamental” parametric geometry representations for aircraft component shapes[R]. AIAA2006-6948,2006.
    [13] KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft,2008,45(1): 142-158. doi: 10.2514/1.29958
    [14] 张德虎,席胜,田鼎. 典型翼型参数化方法的翼型外形控制能力评估[J]. 航空工程进展,2014,5(3): 281-288,295. ZHANG Dehu,XI Sheng,TIAN Ding. Geometry control ability evaluation of classical airfoil parametric methods[J]. Advances in Aeronautical Science and Engineering,2014,5(3): 281-288,295. (in Chinese

    ZHANG Dehu, XI Sheng, TIAN Ding. Geometry control ability evaluation of classical airfoil parametric methods[J]. Advances in Aeronautical Science and Engineering, 2014, 5(3): 281-288, 295. (in Chinese)
    [15] 关晓辉,李占科,宋笔锋. CST气动外形参数化方法研究[J]. 航空学报,2012,33(4): 625-633. GUAN Xiaohui,LI Zhanke,SONG Bifeng. A study on CST aerodynamic shape parameterization method[J]. Acta Aeronautica et Astronautica Sinica,2012,33(4): 625-633. (in Chinese

    GUAN Xiaohui, LI Zhanke, SONG Bifeng. A study on CST aerodynamic shape parameterization method[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4): 625-633. (in Chinese)
    [16] LI Runze,DENG Kaiwen,ZHANG Yufei,et al. Pressure distribution guided supercritical wing optimization[J]. Chinese Journal of Aeronautics,2018,31(9): 1842-1854. doi: 10.1016/j.cja.2018.06.021
    [17] 冯毅,唐伟,任建勋,等. 飞行器参数化几何建模方法研究[J]. 空气动力学学报,2012,30(4): 546-550. FENG Yi,TANG Wei,REN Jianxun,et al. Parametric geometry representation method for hypersonic vehicle configuration[J]. Acta Aerodynamica Sinica,2012,30(4): 546-550. (in Chinese doi: 10.3969/j.issn.0258-1825.2012.04.020

    FENG Yi, TANG Wei, REN Jianxun, et al. Parametric geometry representation method for hypersonic vehicle configuration[J]. Acta Aerodynamica Sinica, 2012, 30(4): 546-550. (in Chinese) doi: 10.3969/j.issn.0258-1825.2012.04.020
    [18] 粟华,龚春林,谷良贤. 基于三维CST建模方法的两层气动外形优化策略[J]. 固体火箭技术,2014,37(1): 1-6,22. SU Hua,GONG Chunlin,GU Liangxian. Two-level aerodynamic shape optimization strategy based on three-dimensional CST modeling method[J]. Journal of Solid Rocket Technology,2014,37(1): 1-6,22. (in Chinese

    SU Hua, GONG Chunlin, GU Liangxian. Two-level aerodynamic shape optimization strategy based on three-dimensional CST modeling method[J]. Journal of Solid Rocket Technology, 2014, 37(1): 1-6, 22. (in Chinese)
    [19] SU Hua,GU Liangxian,GONG Chunlin. Research on geometry modeling method based on three-dimensional CST parameterization technology[R]. AIAA2015-3241,2015.
    [20] SU Hua,GONG Chunlin,GU Liangxian. Three-dimensional CST parameterization method applied in aircraft aeroelastic analysis[J]. International Journal of Aerospace Engineering,2017,2017: 1-15.
    [21] STRAATHOF M H,VAN TOOREN M J L. Extension to the class-shape-transformation method based on B-splines[J]. AIAA Journal,2011,49(4): 780-790. doi: 10.2514/1.J050706
    [22] De BOOR C. A practical guide to splines[J]. Applied Mathematical Sciences,1978,27(149): 157-157.
    [23] 胡婕. 客机机翼气动/结构多学科设计优化研究[D]. 南京: 南京航空航天大学,2012. HU Jie. Application of MDO to integrated aerodynamic/structural design of wings[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2012. (in Chinese

    HU Jie. Application of MDO to integrated aerodynamic/structural design of wings[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese)
    [24] VASSBERG J C,TINOCO E N,MANI M,et al. Summary of the third AIAA CFD drag prediction workshop[R]. AIAA 2007-260,2007.
    [25] XU Zhaoke,XIA Jian. Aerodynamic optimization based on continuous adjoint method for a flexible wing[J]. International Journal of Aerospace Engineering,2016,2016: 1-16.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  96
  • HTML浏览量:  91
  • PDF量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-30
  • 网络出版日期:  2023-11-04

目录

    /

    返回文章
    返回