留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涡轮动叶背侧不同叶高处异型孔气膜对比

王磊 李海旺 谢刚 周志宇

王磊, 李海旺, 谢刚, 等. 涡轮动叶背侧不同叶高处异型孔气膜对比[J]. 航空动力学报, 2024, 39(5):20220350 doi: 10.13224/j.cnki.jasp.20220350
引用本文: 王磊, 李海旺, 谢刚, 等. 涡轮动叶背侧不同叶高处异型孔气膜对比[J]. 航空动力学报, 2024, 39(5):20220350 doi: 10.13224/j.cnki.jasp.20220350
WANG Lei, LI Haiwang, XIE Gang, et al. Comparison on film cooling of different hole shapes at different blade heights on the suction surface of rotor blade[J]. Journal of Aerospace Power, 2024, 39(5):20220350 doi: 10.13224/j.cnki.jasp.20220350
Citation: WANG Lei, LI Haiwang, XIE Gang, et al. Comparison on film cooling of different hole shapes at different blade heights on the suction surface of rotor blade[J]. Journal of Aerospace Power, 2024, 39(5):20220350 doi: 10.13224/j.cnki.jasp.20220350

涡轮动叶背侧不同叶高处异型孔气膜对比

doi: 10.13224/j.cnki.jasp.20220350
基金项目: 国家自然科学基金(51906008,51822602); 中央高校基本科研业务费(YWF-19BJ-J-293); 国家科技重大专项(2017-Ⅲ-0003-0027)
详细信息
    作者简介:

    王磊(1988-),男,博士生,主要从事涡轮叶片气膜冷却研究

    通讯作者:

    周志宇(1993-),男,博士,主要从事涡轮叶片气膜冷却研究。E-mail:zzy19930929@buaa.edu.cn

  • 中图分类号: V231.3

Comparison on film cooling of different hole shapes at different blade heights on the suction surface of rotor blade

  • 摘要:

    采用数值仿真的方法对比研究了涡轮转子叶片背侧不同叶高位置处的圆柱孔、扇形孔和簸箕孔三种孔型气膜冷却的差异。气膜孔位于吸力面17.8%流向位置,并分别在10%、30%、50%、70%和90%叶高位置各设有一个气膜孔,三种孔型的圆孔段直径均为0.8 mm。研究在600 r/min转速(对应旋转雷诺数为536 000)条件下开展并获得吹风比为0.50、0.75、1.00、1.25和1.50条件下的气膜冷却效率分布。研究结果指出:不同叶高位置处的气膜尾迹受叶根通道涡和叶顶泄漏流的影响呈现不同程度地向中间叶高位置偏转的趋势,因此不同叶高位置处的气膜尾迹内的涡对结构不对称的特征也不同。随着吹风比的增加,出现最大气膜冷却效率的叶高位置逐渐向叶顶方向移动。使用扇形孔和簸箕孔可以削弱冷却射流在气膜孔出口位置的法向动量,提升了气膜的附壁性和气膜冷却效率。

     

  • 图 1  数值仿真流体域模型

    Figure 1.  Fluid domain model of the numerical simulation

    图 2  动叶模型示意图

    Figure 2.  Schematic of the rotor blade

    图 3  气膜孔结构示意图

    Figure 3.  Schematic of different hole shapes

    图 4  不同吹风比条件下气膜冷却效率分布云图

    Figure 4.  Contours of film cooling effectiveness distributions at different blowing ratios

    图 5  叶栅通道内主流二次流分布与发展

    Figure 5.  Distribution and development of the secondary flow in the turbine cascade

    图 6  不同叶高位置和孔型的面平均气膜冷却效率

    Figure 6.  Spatial average film cooling effectiveness of different hole shapes at different blade heights

    图 7  不同叶高位置和孔型的展向平均气膜冷却效率分布

    Figure 7.  Spanwise average film cooling effectiveness distributions of different hole shapes at different blade heights

    图 8  气膜孔下游0D和6D位置壁面法向切面的气膜冷却涡结构分布

    Figure 8.  Vortex distributions on the plane 0D and 6D downstream of different film holes

    表  1  不同孔型结构参数

    Table  1.   Structure parameters of different hole shapes

    参数圆柱孔扇形孔簸箕孔
    圆柱段孔径D/mm0.80.80.8
    异型段占比(Ls/L)/%37.537.537.5
    横向扩张角δ/(°)02323
    前向扩张角β/(°)007
    下载: 导出CSV

    表  2  主流和冷却射流工况设置

    Table  2.   Working condition setting of mainstream and coolant

    转速/(r/min)相对叶高位置(y/H)/%主流流速/(m/s)冷气质量流量/10−3 (g/s)
    M=0.50M=0.75M=1.00M=1.25M=1.50
    6001013.002.4943.7404.9876.2347.481
    3014.022.6884.0325.3766.7208.064
    5012.552.4063.6094.8126.0147.217
    7010.822.0753.1134.1515.1886.226
    909.001.7272.5903.4544.3175.180
    下载: 导出CSV
  • [1] GOLDSTEIN R J,ECKERT E R G,RAMSEY J W. Film cooling with injection through holes: adiabatic wall temperatures downstream of a circular hole[J]. Journal of Engineering for Power,1968,90(4): 384-393. doi: 10.1115/1.3609223
    [2] BERNSDORF S,ROSE M G,ABHARI R S. Modeling of film cooling: Part Ⅰ experimental study of flow structure[J]. Journal of Turbomachinery,2006,128(1): 141-149. doi: 10.1115/1.2098768
    [3] BURDET A,ABHARI R S,ROSE M G. Modeling of film cooling: Part Ⅱ model for use in three-dimensional computational fluid dynamics[J]. Journal of Turbomachinery,2007,129(2): 221-231. doi: 10.1115/1.2437219
    [4] YU F Y, YAVUZKURT S. Simulations of film cooling flow structure and heat transfer in the near field of cooling jets with a modified DES model[R]. ASME Paper HT2019-3683, 2019.
    [5] HAVEN B A,KUROSAKA M. Kidney and anti-kidney vortices in crossflow jets[J]. Journal of Fluid Mechanics,1997,352: 27-64. doi: 10.1017/S0022112097007271
    [6] BUNKER R S. A review of shaped hole turbine film-cooling technology[J]. Journal of Heat Transfer,2005,127(4): 441-453. doi: 10.1115/1.1860562
    [7] THOLE K,GRITSCH M,SCHULZ A,et al. Flowfield measurements for film-cooling holes with expanded exits[J]. Journal of Turbomachinery,1998,120(2): 327-336. doi: 10.1115/1.2841410
    [8] HAVEN B, YAMAGATA D, KUROSAKA M, et al. Anti-kidney pair of vortices in shaped holes and their influence on film cooling effectiveness[R]. ASME Paper 97-GT-45, 1997.
    [9] AGARWAL S, GICQUEL L, DUCHAINE F, et al. Analysis of the unsteady flow field inside a fan-shaped cooling hole predicted by large-eddy simulation[R]. ASME Paper GT2020-14201, 2020.
    [10] KANG Y S, JUN S, RHEE D H. Large eddy simulations on fan shaped film cooling hole with various inlet turbulence generation methods[R]. ASME Paper GT2020-15830, 2020.
    [11] JONES F B, FOX D W, OLIVER T, et al. Parametric optimization of film cooling hole geometry[R]. ASME Paper GT2021-59326, 2021.
    [12] ZAMIRI A,YOU S J,CHUNG J T. Large eddy simulation in the optimization of laidback fan-shaped hole geometry to enhance film-cooling performance[J]. International Journal of Heat and Mass Transfer,2020,158: 120014. doi: 10.1016/j.ijheatmasstransfer.2020.120014
    [13] CHI Zhongran, LI Xueying, HAN Chang, et al. Optimization of the hole exit shaping of film holes without and with compound angles for maximal film cooling effectiveness[R]. ASME Paper GT2014-25212 , 2014.
    [14] WANG Chunhua,ZHANG Jingzhou,ZHOU Junhui. Optimization of a fan-shaped hole to improve film cooling performance by RBF neural network and genetic algorithm[J]. Aerospace Science and Technology,2016,58: 18-25. doi: 10.1016/j.ast.2016.08.004
    [15] GAO Zhihong,NARZARY D P,HAN J C. Film-cooling on a gas turbine blade pressure side or suction side with compound angle shaped holes[J]. Journal of Turbomachinery,2009,131(1): 011019.1-011019.11.
    [16] TAO Zhi,YANG Xiaojun,DING Shuiting,et al. Experimental study of rotation effect on film cooling over the flat wall with a single hole[J]. Experimental Thermal and Fluid Science,2008,32(5): 1081-1089. doi: 10.1016/j.expthermflusci.2007.12.003
    [17] TAO Zhi,LI Guoqing,DENG Hongwu,et al. Film cooling performance in a low-speed 1.5-stage turbine: effects of blowing ratio and rotation[J]. Journal of Enhanced Heat Transfer,2011,18(5): 419-432. doi: 10.1615/JEnhHeatTransf.2011003253
    [18] ZHOU Zhiyu,LI Haiwang,WANG Haichao,et al. Film cooling of cylindrical holes on turbine blade suction side near leading edge[J]. International Journal of Heat and Mass Transfer,2019,141: 669-679. doi: 10.1016/j.ijheatmasstransfer.2019.07.028
    [19] MCGOVERN K T, LEYLEK J H. A detailed analysis of film cooling physics: Part Ⅱ compound-angle injection with cylindrical holes[R]. ASME Paper 97-GT-270, 1997.
    [20] LEE S W,KIM Y B,LEE J S. Flow characteristics and aerodynamic losses of film-cooling jets with compound angle orientations[J]. Journal of Turbomachinery,1997,119(2): 310-319. doi: 10.1115/1.2841114
    [21] 周志宇. 旋转状态下高压涡轮动叶吸力面气膜孔排布优化研究[D]. 北京: 北京航空航天大学, 2021.

    ZHOU Zhiyu. Optimization study of film hole arrangement on the suction surface of a rotating turbine blade[D]. Beijing: Beihang University, 2021. (in Chinese)
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  77
  • HTML浏览量:  47
  • PDF量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-19
  • 网络出版日期:  2023-10-11

目录

    /

    返回文章
    返回