留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多旋翼无人机串联混合动力系统能量管理仿真

徐楷 王步宇 帅石金

徐楷, 王步宇, 帅石金. 多旋翼无人机串联混合动力系统能量管理仿真[J]. 航空动力学报, 2024, 39(6):20220385 doi: 10.13224/j.cnki.jasp.20220385
引用本文: 徐楷, 王步宇, 帅石金. 多旋翼无人机串联混合动力系统能量管理仿真[J]. 航空动力学报, 2024, 39(6):20220385 doi: 10.13224/j.cnki.jasp.20220385
XU Kai, WANG Buyu, SHUAI Shijin. Numerical investigation on the energy management strategies of a series hybrid unmanned multirotor aerial vehicle[J]. Journal of Aerospace Power, 2024, 39(6):20220385 doi: 10.13224/j.cnki.jasp.20220385
Citation: XU Kai, WANG Buyu, SHUAI Shijin. Numerical investigation on the energy management strategies of a series hybrid unmanned multirotor aerial vehicle[J]. Journal of Aerospace Power, 2024, 39(6):20220385 doi: 10.13224/j.cnki.jasp.20220385

多旋翼无人机串联混合动力系统能量管理仿真

doi: 10.13224/j.cnki.jasp.20220385
基金项目: 航空科学基金(2020Z39058001)
详细信息
    作者简介:

    徐楷(1998-),男,博士生,主要研究方向为混合动力无人机。E-mail:xu-j21@mails.tsinghua.edu.cn

    通讯作者:

    帅石金(1965-),男,教授、博士生导师,博士,主要从事混合动力与电推进系统、燃料电池发动机及发动机燃料、喷雾、燃烧与排放控制研究。E-mail:sjshuai@tsinghua.edu.cn

  • 中图分类号: V279.2

Numerical investigation on the energy management strategies of a series hybrid unmanned multirotor aerial vehicle

  • 摘要:

    以最大输出功率为14.9 kW、功质比为2.8的活塞发动机作为主动力源搭建了多旋翼无人机准静态飞行串联混合动力系统功率模型,针对最大起飞质量80 kg级的多旋翼无人机进行了飞行性能模拟计算,重点比较不同能量管理策略的节油效果,并进一步探索多旋翼无人机起飞电池容量和燃油量对经济性和续航能力的影响。结果表明:在荷电状态保持约束下,减少电池上的能量损耗能够降低混动无人机油耗,且最小等效能量消耗策略表现较好;短航时条件下一定比例的电池容量有利于节油,但长航时条件下所用电池能量比例越大,油耗越大,系统经济性越差;载重越大,任务时间越短,则系统的燃油经济性越好。

     

  • 图 1  混合动力多旋翼无人机设计模型框图

    Figure 1.  Flow chart for hybrid propulsion UAV simulation

    图 2  发动机工作特性图

    Figure 2.  Map diagram of the engine

    图 3  状态空间步进示意图

    Figure 3.  Sketch for single dynamic step

    图 4  能量管理策略对比采用的工况示意图

    Figure 4.  Profiles for energy management evaluation

    图 5  波动工况下发电系统功率和电池SOC变化

    Figure 5.  Power and $ {C}_{\mathrm{S}\mathrm{O}\mathrm{C}} $ profile of the hybrid propulsion system under fluctuation

    图 6  平稳工况下发电系统功率和电池SOC变化

    Figure 6.  Power and $ {C}_{\mathrm{S}\mathrm{O}\mathrm{C}} $ profile of the hybrid propulsion system under steady working condition

    图 7  平稳工况和波动工况下两种不同能量管理策略和动态规划下的电池功率损耗变化

    Figure 7.  Battery power loss results obtained using two different energy management and dynamic programming under steady condition and fluctuation condition

    图 8  平稳工况和波动工况下两种不同能量管理策略和动态规划下的发动机比油耗变化

    Figure 8.  Engine specific fuel consumption profile obtained using two different energy management strategies and dynamic programming under steady condition and fluctuation condition

    图 9  t=4000 s飞行剖面图

    Figure 9.  Flight profile for t=4000 s case

    图 10  不同电池、飞行时间和载质量条件下总油耗变化

    Figure 10.  Net fuel consumption change as battery set, flight time, and payload vary

    图 11  不同电池质量和载质量下无人机性能对比

    Figure 11.  UAV Performance comparison under different battery set and payload

    图 12  电池质量优化结果

    Figure 12.  Optimum battery mass under different conditions

    图 13  电池组容量临界线

    Figure 13.  Critical line for optimum battery capacity

    表  1  旋翼模型相关参数

    Table  1.   Propeller model parameters

    参数数值
    桨盘直径Dp/m0.72
    螺距Hp/m0.30
    桨叶数Bp2
    展弦比A5
    Oswald因子e0.83
    零升阻力系数Cfd0.015
    下载: 导出CSV

    表  2  电动机、电调模型相关参数

    Table  2.   Motor and ESC model parameters

    参数数值
    电动机KvKv0/(r/(min∙V))172
    电动机标称空载电压Um0/V44
    电动机标称空载电流Im0/A1.65
    电动机内阻Rm0.021
    电调内阻Re0
    发电系统等效内阻Rn0.1
    动力电路电压Un/V60
    下载: 导出CSV

    表  3  DA215型发动机部分参数

    Table  3.   Basic properties of DA215 pistol engine

    参数数值
    最大功率/kW14.9
    压缩比7.6
    发动机主体质量/g4950
    最低比油耗/ (g/(kW·h))552
    下载: 导出CSV

    表  4  波动工况下总油耗和发动机平均功率对比

    Table  4.   Comparison of average engine power and net fuel consumption under fluctuation

    策略油耗/kg发动机平均功率/W
    Rule-Based1.36611075
    DP1.28510490
    ECMS1.34010911
    下载: 导出CSV

    表  5  平稳工况下总油耗和发动机平均功率对比

    Table  5.   Comparison of average engine power and net fuel consumption under steady working condition

    策略油耗/kg发动机平均功率/W
    Rule-Based1.09910200
    DP1.0139470
    ECMS1.0629870
    下载: 导出CSV
  • [1] 赵伟,王正平,张晓辉,等. 面向疫情防控的无人机关键技术综述[J]. 无人系统技术,2020,3(3): 8-18.

    ZHAO Wei,WANG Zhengping,ZHANG Xiaohui,et al. A review on key technologies of UAV for epidemic prevention and control[J]. Unmanned Systems Technology,2020,3(3): 8-18. (in Chinese)
    [2] DERUYCK M, WYCKMANS J, MARTENS L, et al. Emergency ad-hoc networks by using drone mounted base stations for a disaster scenario[C]//Proceedings of IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications. Piscataway, US: IEEE, 2016: 1-7.
    [3] 王刚,胡峪,宋笔锋,等. 电动无人机动力系统优化设计及航时评估[J]. 航空动力学报,2015,30(8): 1834-1840.

    WANG Gang,HU Yu,SONG Bifeng,et al. Optimal design and endurance estimation of propulsion system for electric-powered unmanned aerial vehicle[J]. Journal of Aerospace Power,2015,30(8): 1834-1840. (in Chinese)
    [4] 丁正原. 基于油电混合动力的倾转四旋翼飞行器总体方案设计[D]. 南京: 南京航空航天大学, 2020.

    DING Zhengyuan. Overall design of quad tiltrotor based on hybrid fuel-electric power[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020. (in Chinese)
    [5] NANDA A. The propulsive design aspects on the world’s first direct drive hybrid airplane[D]. Daytona Beach, US: Embry-Riddle Aeronautical University, 2011.
    [6] FRIEDRICH C,ROBERTSON P A. Hybrid-electric propulsion for aircraft[J]. Journal of Aircraft,2015,52(1): 176-189. doi: 10.2514/1.C032660
    [7] BRELJE B J,MARTINS J R R A. Electric, hybrid, and turboelectric fixed-wing aircraft: a review of concepts, models, and design approaches[J]. Progress in Aerospace Sciences,2019,104: 1-19. doi: 10.1016/j.paerosci.2018.06.004
    [8] HAGEMAN M D, WISNIEWSKI C. Development and analysis of a group 1 UAV series hybrid power system with two engine options[R]. AIAA2016-5011, 2016.
    [9] HAGEMAN M D, MCLAUGHLIN T E. Considerations for pairing the IC engine and electric motor in a hybrid power system for small UAVs[R]. AIAA2018-2132, 2018.
    [10] XIE Ye,SAVVARIS A,TSOURDOS A. Fuzzy logic based equivalent consumption optimization of a hybrid electric propulsion system for unmanned aerial vehicles[J]. Aerospace Science and Technology,2019,85: 13-23. doi: 10.1016/j.ast.2018.12.001
    [11] XIE Ye,SAVVARISAL A,TSOURDOS A,et al. Review of hybrid electric powered aircraft, its conceptual design and energy management methodologies[J]. Chinese Journal of Aeronautics,2021,34(4): 432-450. doi: 10.1016/j.cja.2020.07.017
    [12] 胡春明,李诚,刘娜,等. 无人机增程式电推进系统双模糊能量管理策略仿真[J]. 航空动力学报,2021,36(12): 2652-2662.

    HU Chunming,LI Cheng,LIU Na,et al. Simulation on dual-fuzzy energy management strategy of UAV extended range electric propulsion system[J]. Journal of Aerospace Power,2021,36(12): 2652-2662. (in Chinese)
    [13] 赵家豪,魏民祥,丁玉章,等. 增程式APU混沌退火混合粒子群优化模糊PID动态控制[J]. 航空动力学报,2021,36(6): 1213-1221.

    ZHAO Jiahao,WEI Minxiang,DING Yuzhang,et al. Dynamic control strategy of extended-range APU based on fuzzy PID optimized by CAHPSO[J]. Journal of Aerospace Power,2021,36(6): 1213-1221. (in Chinese)
    [14] 全权. 多旋翼飞行器设计与控制[M]. 北京: 电子工业出版社, 2018.
    [15] MOFFITT B, BRADLEY T, PAREKH D, et al. Validation of vortex propeller theory for UAV design with uncertainty analysis[R]. AIAA2008-406, 2008.
    [16] BANGURA M, LIM H, KIM H J, et al. Aerodynamic power control for multirotor aerial vehicles[C]//Proceedings of IEEE International Conference on Robotics and Automation. Piscataway, US: IEEE, 2014: 529-536.
    [17] HOBBY K. Turnigy RotoMax 50cc Size Brushless Outrunner Motor[EB/OL] (2023-10-17). [2021-06-28]. https://hobbyking.com/en_us/turnigy-rotomax-50cc-size-brushless-outrunner-motor.html?___store=en_us.
    [18] ZENG Yong,XU Jie,ZHANG Rui. Energy minimization for wireless communication with rotary-wing UAV[J]. IEEE Transactions on Wireless Communications,2019,18(4): 2329-2345. doi: 10.1109/TWC.2019.2902559
    [19] HUNG J Y,GONZALEZ L F. On parallel hybrid-electric propulsion system for unmanned aerial vehicles[J]. Progress in Aerospace Sciences,2012,51: 1-17. doi: 10.1016/j.paerosci.2011.12.001
    [20] MERICAL K,BEECHNER T,YELVINGTON P. Hybrid-electric, heavy-fuel propulsion system for small unmanned aircraft[J]. SAE International Journal of Aerospace,2014,7(1): 126-134. doi: 10.4271/2014-01-2222
    [21] SZIROCZAK D,JANKOVICS I,GAL I,et al. Conceptual design of small aircraft with hybrid-electric propulsion systems[J]. Energy,2020,204: 117937.1-117937.18.
    [22] 欧阳明高, 李建秋, 杨福源. 汽车新型动力系统: 构型、建模与控制[M]. 北京: 清华大学出版社, 2008.
    [23] 侯聪. 基于出行特征的插电式混合动力汽车能耗评价与优化[D]. 北京: 清华大学, 2014.

    HOU Cong. Evaluation and optimization of energy consumption based on driving patterns for plug-in hybrid electric vehicle[D]. Beijing: Tsinghua University, 2014. (in Chinese)
    [24] HE Hongwen,XIONG Rui,FAN Jinxin. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach[J]. Energies,2011,4(4): 582-598. doi: 10.3390/en4040582
    [25] PENG Hujun,LI Jianxiang,LÖWENSTEIN L,et al. A scalable, causal, adaptive rule-based energy management for fuel cell hybrid railway vehicles[J]. Applied Energy,2020,267: 114987.1-114987.15.
    [26] ZHU Jianyun,CHEN Li,WANG Xuefeng,et al. Bi-level optimal sizing and energy management of hybrid electric propulsion systems[J]. Applied Energy,2020,260: 114134.1-114134.15.
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  94
  • HTML浏览量:  47
  • PDF量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-30
  • 网络出版日期:  2023-10-25

目录

    /

    返回文章
    返回