留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于油冷叶片的涡轮叶间燃烧性能研究

卿黎明 朱剑琴 程泽源

卿黎明, 朱剑琴, 程泽源. 基于油冷叶片的涡轮叶间燃烧性能研究[J]. 航空动力学报, 2024, 39(6):20220388 doi: 10.13224/j.cnki.jasp.20220388
引用本文: 卿黎明, 朱剑琴, 程泽源. 基于油冷叶片的涡轮叶间燃烧性能研究[J]. 航空动力学报, 2024, 39(6):20220388 doi: 10.13224/j.cnki.jasp.20220388
QING Liming, ZHU Jianqin, CHENG Zeyuan. Investigation on turbine inter-vane combustion performance based on fuel cooled vane[J]. Journal of Aerospace Power, 2024, 39(6):20220388 doi: 10.13224/j.cnki.jasp.20220388
Citation: QING Liming, ZHU Jianqin, CHENG Zeyuan. Investigation on turbine inter-vane combustion performance based on fuel cooled vane[J]. Journal of Aerospace Power, 2024, 39(6):20220388 doi: 10.13224/j.cnki.jasp.20220388

基于油冷叶片的涡轮叶间燃烧性能研究

doi: 10.13224/j.cnki.jasp.20220388
基金项目: 中央高校基本科研业务费专项资金资助(501LKQB2022104013)
详细信息
    作者简介:

    卿黎明(1998-),男,助理工程师,硕士,主要从事涡轮叶片冷却技术研究。E-mail:qingliming@buaa.edu.cn

    通讯作者:

    程泽源(1992-),男,副研究员,博士,主要从事航空航天动力系统高温部件冷却技术研究。E-mail:chengzeyuan@buaa.edu.cn

  • 中图分类号: V231.2

Investigation on turbine inter-vane combustion performance based on fuel cooled vane

  • 摘要:

    为进一步提升航空燃气涡轮发动机性能,提出一种高压涡轮叶间燃烧的结构,采用叶片油冷后的高温燃油喷入叶间通道燃烧,利用径向槽(radial vane cavity,RVC)稳定火焰,以涡轮导向叶片C3X为叶间燃烧叶片模型,数值研究了径向槽尺寸(深长比为0.4~0.6)、油气比(0.007~0.0105)和燃油温度(300~500 K)对叶间燃烧性能的影响。结果表明:径向槽深长比为0.5时获得最佳燃烧效果,由燃烧引起的热阻损失在7%左右,可实现在叶间的近似等温燃烧;叶间燃烧性能随油气比增大而降低,油气比为0.007时距叶片出口 20 mm处燃烧效率达到98.86%;高温燃油在叶间通道内燃烧性能要明显优于低温燃油的燃烧性能,在叶片出口处燃烧效率提升约13%。相关结论可为叶间燃烧技术的发展提供参考。

     

  • 图 1  C3X叶片物理模型[18](单位:mm)

    Figure 1.  Physical model of the C3X vane (unit:mm)

    图 2  C3X叶片径向槽结构(单位:mm)

    Figure 2.  Radial vane cavity of the C3X vane (unit:mm)

    图 3  叶片冷气出流布局

    Figure 3.  Layout of cooling air outflow from the vane

    图 4  CS0网格无关性验证

    Figure 4.  Grid independence verification of the CS0

    图 5  计算网格(CS0)

    Figure 5.  Computational grids (CS0)

    图 6  验证模型[22](单位:mm)

    Figure 6.  Verification mode[22](unit:mm)

    图 7  壁面静压计算结果与实验结果对比[22]

    Figure 7.  Comparison between the calculated and experimental results of wall static pressure[22]

    图 8  不同径向槽尺寸冷态流场沿程流动特性

    Figure 8.  Flow characteristics of cold flow field with different radial vane cavity sizes

    图 9  不同径向槽尺寸燃烧流场沿程流动与燃烧特性

    Figure 9.  Flow and combustion characteristics of combustion flow field with different radial vane cavity sizes

    图 10  不同径向槽尺寸沿程燃烧效率

    Figure 10.  Combustion efficiency along the way with different radial vane cavity sizes

    图 11  不同径向槽尺寸出口径向总温分布

    Figure 11.  Radial total temperature distribution at the outlet with different radial vane cavity sizes

    图 12  不同径向槽尺寸中截面流场结构

    Figure 12.  Medium section flow field structure with different radial vane cavity sizes

    图 13  不同径向槽尺寸上端壁温度场

    Figure 13.  Temperature field of upper face with different radial vane cavity sizes

    图 14  D/L=0.5时冷态流场与燃烧流场沿程平均静温

    Figure 14.  Average static temperature of cold and combustion flow field with D/L =0.5

    图 15  不同油气比燃烧流场流动特性

    Figure 15.  Flow characteristics of combustion flow field with different fuel-air ratios

    图 16  不同油气比燃烧流场燃烧特性

    Figure 16.  Combustion characteristics of combustion flow field with different fuel-air ratios

    图 17  不同油气比出口径向总温分布

    Figure 17.  Radial total temperature distribution at the outlet with different fuel-air ratios

    图 18  不同燃油温度沿程总压恢复系数

    Figure 18.  Total pressure recovery coefficient along the way with different fuel temperatures

    图 19  不同燃油温度燃烧流场燃烧特性

    Figure 19.  Combustion characteristics of combustion flow field with different fuel temperatures

    图 20  不同燃油温度沿程CO与CO2体积分数

    Figure 20.  Volume fraction of CO and CO2 along the way with different fuel temperatures

    表  1  叶片径向槽尺寸

    Table  1.   Dimension of the radial vane cavity

    结构名称D/L
    CS00
    CS10.4
    CS20.5
    CS30.6
    下载: 导出CSV

    表  2  边界参数

    Table  2.   Boundary parameters

    边界条件参数 数值
    主流进口总压/Pa 413286
    主流进口总温/K 818
    主流出口静压/Pa 254172
    主流进口湍流强度 8.3
    主流进口湍流黏性比 30
    前后壁冷气流量/(kg/s) 0.0068
    尾缘劈缝流量/(kg/s) 0.020
    下载: 导出CSV
  • [1] JANSOHN P. Modern Gas Turbine Systems: High efficiency,low emission,fuel flexible power generation[M]. Duxford,UK: Woodhead Publishing,2013.
    [2] 尚守堂,程明,刘殿春,等. 涡轮级间燃烧室技术的研究现状与发展趋势[J]. 航空科学技术,2011,22(4): 79-82. SHANG Shoutang,CHENG Ming,LIU Dianchun,et al. The status and direction of inter-stage turbine burner technology[J]. Aeronautical Science & Technology,2011,22(4): 79-82. (in Chinese

    SHANG Shoutang, CHENG Ming, LIU Dianchun, et al. The status and direction of inter-stage turbine burner technology[J]. Aeronautical Science & Technology, 2011, 22(4): 79-82. (in Chinese)
    [3] LIU F,SIRIGNANO W A. Turbojet and turbofan engine performance increases through turbine burners[J]. Journal of Propulsion and Power,2001,17(3): 695-705. doi: 10.2514/2.5797
    [4] SIRIGNANO W A,LIU F. Performance increases for gas-turbine engines through combustion inside the turbine[J]. Journal of Propulsion and Power,1999,15(1): 111-118. doi: 10.2514/2.5398
    [5] BOHAN B T,POLANKA M D. Analysis of flow migration in an ultra-compact combustor[J]. Journal of Engineering for Gas Turbines and Power,2013,135(5): 420-431.
    [6] ZELINA J,EHRET J,HANCOCK R,et al. Ultra-compact combustion technology using high swirl for enhanced burning rate[C]//Proceedings of the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston,US: AIAA,2002: 7-10.
    [7] THORNBURG H J,SEKAR B,ZELINA J,et al. Prediction of inter-turbine burner (ITB) performance with curved radial vane cavity at various equivalence ratios[C]//Proceedings of ASME Turbo Expo: Power for Land,Sea,and Air. Berlin: ASME,2009: 2131-2139.
    [8] GREENWOOD R. Numerical analysis and optimization of the ultra compact combustor: AD434747 [R]. Ala,US: Department of the Air force,Air University,2005.
    [9] GREENWOOD R,ANTHENIEN R,ZELINA J. Computational analysis of the ultra compact combustor: AIAA-2005-220[R]. Reston,US: the 43rd AIAA Aerospace Sciences Meeting and Exhibit,2005.
    [10] 李明,唐豪,张超,等. 一种新型涡轮叶间燃烧室的数值模拟[J]. 航空动力学报,2012,27(1): 55-62. LI Ming,TANG Hao,ZHANG Chao,et al. Numerical simulation of a novel turbine inter-vane burner[J]. Journal of Aerospace Power,2012,27(1): 55-62. (in Chinese

    LI Ming, TANG Hao, ZHANG Chao, et al. Numerical simulation of a novel turbine inter-vane burner[J]. Journal of Aerospace Power, 2012, 27(1): 55-62. (in Chinese)
    [11] 李明,唐豪,郑海飞,等. 径向槽对涡轮叶间补燃室性能影响的数值研究[J]. 航空动力学报,2014,29(12): 2836-2844. LI Ming,TANG Hao,ZHENG Haifei,et al. Numerical investigation of influence of radial vane cavity on turbine inter-vane burner performance[J]. Journal of Aerospace Power,2014,29(12): 2836-2844. (in Chinese

    LI Ming, TANG Hao, ZHENG Haifei, et al. Numerical investigation of influence of radial vane cavity on turbine inter-vane burner performance[J]. Journal of Aerospace Power, 2014, 29(12): 2836-2844. (in Chinese)
    [12] 郑海飞,唐豪,李明,等. 基于涡轮导向器增燃技术的总体性能与燃烧组织[J]. 航空动力学报,2014,29(5): 1053-1061. ZHENG Haifei,TANG Hao,LI Ming,et al. Overall performance and combustion organization based on turbine inter-vane burning technology[J]. Journal of Aerospace Power,2014,29(5): 1053-1061. (in Chinese

    ZHENG Haifei, TANG Hao, LI Ming, et al. Overall performance and combustion organization based on turbine inter-vane burning technology[J]. Journal of Aerospace Power, 2014, 29(5): 1053-1061. (in Chinese)
    [13] BOHAN B T,POLANKA M D,RUTLEDGE J L. Computational analysis of a novel cooling scheme for ultra compact combustor turbine vanes[C]//Proceedings of ASME Turbo Expo: Turbomachinery Technical Conference and Exposition. Charlotte,US: ASME,2017: 1-12.
    [14] 俞刚,李建国,赵震,等. 超声速模型燃烧室中气化煤油喷注研究[J]. 推进技术,2005,26(2): 97-100. YU Gang,LI Jianguo,ZHAO Zhen,et al. Investigation of vaporized kerosene injection in a supersonic model combustor[J]. Journal of Propulsion Technology,2005,26(2): 97-100. (in Chinese

    YU Gang, LI Jianguo, ZHAO Zhen, et al. Investigation of vaporized kerosene injection in a supersonic model combustor[J]. Journal of Propulsion Technology, 2005, 26(2): 97-100. (in Chinese)
    [15] FAN Xuejun,YU Gong,LI Jianguo,et al. Investigation of vaporized kerosene injection and combustion in a supersonic model combustor[J]. Journal of Propulsion and Power,2006,22(1): 103-110. doi: 10.2514/1.15427
    [16] 刘德彰,刘明候,武卫东. 高温涡轮叶片用航空煤油冷却的机理研究[J]. 航空动力学报,1992,7(3): 261-265,292. LIU Dezhang,LIU Minghou,WU Weidong. The mechanism of liquid-cooling of vane in high-temperature turbine[J]. Journal of Aerospace Power,1992,7(3): 261-265,292. (in Chinese

    LIU Dezhang, LIU Minghou, WU Weidong. The mechanism of liquid-cooling of vane in high-temperature turbine[J]. Journal of Aerospace Power, 1992, 7(3): 261-265, 292. (in Chinese)
    [17] WILLS R W,SEBASTIAN J R,COLE A,et al. Experiments in a heated,rotating test rig simulating a fuel cooled turbine[C]//Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston,US: AIAA,2014: 3575-3596.
    [18] HYLTON L,MIHELC M S,TURNER E,et al. Analytical and experimental evaluation of the heat transfer distribution over the surfaces of turbine vanes: NASA CR168015 [R]. Chicago,US: NASA Lewis Research Center,1983
    [19] FLUENT Incorporation. FLUENT User’s Guide[M]. New Hampshire,US: Fluent Incorporation,2020.
    [20] 彭瀚,黄玥,邢菲,等. 入口流量分配对超紧凑级间燃烧室性能的影响[J]. 航空动力学报,2017,32(1): 60-65. PENG Han,HUANG Yue,XING Fei,et al. Performance of ultra-compact inter-turbine burner with different inlet mass flow splits[J]. Journal of Aerospace Power,2017,32(1): 60-65. (in Chinese

    PENG Han, HUANG Yue, XING Fei, et al. Performance of ultra-compact inter-turbine burner with different inlet mass flow splits[J]. Journal of Aerospace Power, 2017, 32(1): 60-65. (in Chinese)
    [21] 黄勇. 燃烧与燃烧室[M]. 北京: 北京航空航天大学出版社,2009.
    [22] 李庆. 基于凹腔火焰稳定器的亚燃冲压发动机燃烧室点火过程研究[D]. 长沙: 国防科学技术大学,2010. LI Qing. Research on the ignition process of cavity-based flameholder in ramjet combustor[D]. Changsha: National University of Defense Technology,2010. (in Chinese

    LI Qing. Research on the ignition process of cavity-based flameholder in ramjet combustor[D]. Changsha: National University of Defense Technology, 2010. (in Chinese)
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  48
  • HTML浏览量:  20
  • PDF量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-31
  • 网络出版日期:  2023-11-20

目录

    /

    返回文章
    返回