留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阻塞率对液液针栓多喷注单元喷雾场特性的影响

王凯 唐亮 雷凡培 杨岸龙 周立新

王凯, 唐亮, 雷凡培, 等. 阻塞率对液液针栓多喷注单元喷雾场特性的影响[J]. 航空动力学报, 2024, 39(7):20220419 doi: 10.13224/j.cnki.jasp.20220419
引用本文: 王凯, 唐亮, 雷凡培, 等. 阻塞率对液液针栓多喷注单元喷雾场特性的影响[J]. 航空动力学报, 2024, 39(7):20220419 doi: 10.13224/j.cnki.jasp.20220419
WANG Kai, TANG Liang, LEI Fanpei, et al. Effect of blockage rate on spray characteristics of liquid-liquid pintle multi-injector elements[J]. Journal of Aerospace Power, 2024, 39(7):20220419 doi: 10.13224/j.cnki.jasp.20220419
Citation: WANG Kai, TANG Liang, LEI Fanpei, et al. Effect of blockage rate on spray characteristics of liquid-liquid pintle multi-injector elements[J]. Journal of Aerospace Power, 2024, 39(7):20220419 doi: 10.13224/j.cnki.jasp.20220419

阻塞率对液液针栓多喷注单元喷雾场特性的影响

doi: 10.13224/j.cnki.jasp.20220419
基金项目: 国家自然科学基金(11502186)
详细信息
    作者简介:

    王凯(1990-),男,高级工程师,博士,主要从事液体火箭发动机喷雾燃烧技术研究

  • 中图分类号: V434.3

Effect of blockage rate on spray characteristics of liquid-liquid pintle multi-injector elements

  • 摘要:

    为了研究阻塞率对针栓式喷注器喷雾场特性的影响,基于平面针栓喷注单元的研究思路,设计了结构可更换的平面针栓多喷注单元试验件,同时采用分相识别的PLIC VOF(piecewise linear interface calculation volume of fluid)多相流仿真方法及高速摄影试验方法,开展了阻塞率对液液针栓多喷注单元的雾化角、喷雾扩散角及液雾空间分布的影响规律研究。对于径向圆孔,阻塞率的改变通过改变径向孔直径及个数实现;对于径向矩形孔,阻塞率的改变还可以通过改变矩形的高宽比实现。研究发现:阻塞率对喷雾场的液雾空间分布有重要影响。在径向喷注孔总动量比不变时,阻塞率对喷雾场的影响主要通过喷雾扇空间间距的直接影响和转化为有效动量比的间接影响两种途径实现,径向孔形状对喷雾场的影响本质上也转化为阻塞率及有效动量比的影响。径向孔直径改变和形状改变造成的阻塞率变化对雾化角的影响仅通过有效动量比间接实现,喷注单元的雾化角理论模型也适用于多喷注单元;阻塞率对喷雾扩散角和液雾空间分布的影响则通过两种途径共同产生。另外,高的总动量比工况下,液雾径向分布范围会增大,相邻单元间相互作用会使得雾扇中心区和外侧区液雾分布量均增加。

     

  • 图 1  针栓式喷注器示意图[1]

    Figure 1.  Schematic diagram of pintle injector[1]

    图 2  液液平面针栓多喷注单元试验装置结构

    Figure 2.  Structure of liquid-liquid plane pintle multi-injector element

    图 3  多喷注单元径向孔结构

    Figure 3.  Structure of radial orifices in pintle multi-injector element

    图 4  液液平面针栓多喷注单元雾化特性试验系统

    Figure 4.  Experiment system of spray characteristics for liquid-liquid plane pintle multi-injector element

    图 5  试验图像处理过程

    Figure 5.  Image processing of experimental results

    图 6  试验图像测量雾化角示意图

    Figure 6.  Schematic diagram of spray angle of experimental image

    图 7  喷雾场图像灰度统计区域

    Figure 7.  Statistical zone of spray field image grayscale

    图 8  图像灰度概率密度分布(数据处理方法无关性验证)

    Figure 8.  Image grayscale probability density distribution (verification of independence of data processing methods)

    图 9  多喷注单元计算域模型

    Figure 9.  Calculation domain model of multi-injector element

    图 10  液膜液束撞击单元

    Figure 10.  Injection element of liquid sheet impacting liquid jet

    图 11  雾化角和喷雾扩散角示意图

    Figure 11.  Schematic diagram of spray angle and spray diffusion angle

    图 12  不同阻塞率下的雾化角及喷雾扩散角曲线

    Figure 12.  Curves of spray angle and spray diffusion angle in different blocking rates

    图 13  多喷注单元喷雾场“背脊”结构

    Figure 13.  Ridge structure of spray field in multi-injector element

    图 14  相邻双射流撞壁过程[23-24]

    Figure 14.  Process of two adjacent jets impinging on wall[23-24]

    图 15  上洗膜形成过程

    Figure 15.  Forming process of upwash sheet

    图 16  喷雾扇液膜撞击变形过程

    Figure 16.  Impingement and deformation process of spray fan liquid sheet

    图 17  多径向圆孔的喷雾场瞬态图像

    Figure 17.  Transient image of spray field with multiple radial circular orifices

    图 18  不同有效动量比和阻塞率下的图像灰度概率密度分布

    Figure 18.  Image grayscale probability density distribution with different effective impinging momentum ratios and blockage rates

    图 19  不同径向孔形状下雾化角及喷雾扩散角变化

    Figure 19.  Variation of spray angle and spray diffusion angle with different radial orifice shapes

    图 20  不同径向孔形状的多喷注单元喷雾场瞬态图像

    Figure 20.  Spray field transient image of multi-injector element with different radial orifice shapes

    图 21  不同径向孔形状的图像灰度概率密度分布

    Figure 21.  Image grayscale probability density distribution with different radial orifice shapes

    图 22  喷注单元的喷雾场瞬态图像(CMReff=2.76)

    Figure 22.  Spray field transient image of injector element (CMReff=2.76)

    图 23  喷注单元图像灰度概率密度分布(CMReff=2.76)

    Figure 23.  Image grayscale probability density distribution of injector element (CMReff=2.76)

    表  1  径向圆孔的结构参数

    Table  1.   Geometry parameters of radial circular orifices

    喷嘴
    编号
    孔数 有效
    孔数
    孔径d/
    mm
    孔心间距l/
    mm
    阻塞率
    CBF
    J0 9 8 0.80 2.00 0.40
    J0-1 11 10 0.72 1.60 0.45
    J0-2 13 12 0.65 1.33 0.49
    J1 9 8 1.00 2.00 0.50
    J1-1 7 6 1.15 2.67 0.43
    J1-2 11 10 0.90 1.60 0.56
    J1-3 13 12 0.82 1.33 0.615
    下载: 导出CSV

    表  2  径向矩形孔的结构参数

    Table  2.   Geometry parameters of radial rectangular orifices

    喷嘴
    编号
    孔数 有效
    孔数
    孔宽a/
    mm
    孔高b/
    mm
    孔心间距l/
    mm
    阻塞率
    CBF
    J2 9 8 0.90 0.90 2.00 0.45
    J2-1 9 8 0.704 1.15 2.00 0.35
    J2-2 9 8 1.15 0.704 2.00 0.575
    下载: 导出CSV
  • [1] 刘昌波. 针栓式喷注器雾化特性的多尺度仿真研究[D]. 西安: 西安航天动力研究所,2014. LIU Changbo. Multiscale simulations of primary atomization for the pintle injector[D]. Xi’an: Xi’an Aerospace Propulsion Institute,2014. (in Chinese

    LIU Changbo. Multiscale simulations of primary atomization for the pintle injector[D]. Xi’an: Xi’an Aerospace Propulsion Institute, 2014. (in Chinese)
    [2] 岳春国,李进贤,侯晓,等. 变推力液体火箭发动机综述[J]. 中国科学:E辑 技术科学,2009,39(3): 464-468. YUE Chunguo,LI Jinxian,HOU Xiao,et al. Summary of variable thrust liquid rocket engine[J]. Science in China: Series E Technological Sciences,2009,39(3): 464-468. (in Chinese

    YUE Chunguo, LI Jinxian, HOU Xiao, et al. Summary of variable thrust liquid rocket engine[J]. Science in China: Series E Technological Sciences, 2009, 39(3): 464-468. (in Chinese)
    [3] 安鹏,姚世强,王京丽,等. 针栓式喷注器的特点及设计方法[J]. 导弹与航天运载技术,2016(3): 50-54. AN Peng,YAO Shiqiang,WANG Jingli,et al. Characteristics and design of pintle injector[J]. Missiles and Space Vehicles,2016(3): 50-54. (in Chinese

    AN Peng, YAO Shiqiang, WANG Jingli, et al. Characteristics and design of pintle injector[J]. Missiles and Space Vehicles, 2016(3): 50-54. (in Chinese)
    [4] YU I,CHOI J,KIM T,et al. A study on combustion performance by the shape of slit of the canted slit type pintle injector[J]. Journal of the Korean Society of Propulsion Engineers,2017,21(2): 111-118. doi: 10.6108/KSPE.2017.21.2.111
    [5] YU I,KIM S,KO Y,et al. Combustion performance of a pintle injector rocket engine with canted slit shape by characteristic length and total momentum ratio[J]. Journal of the Korean Society of Propulsion Engineers,2017,21(1): 36-43. doi: 10.6108/KSPE.2017.21.1.036
    [6] LEE K,NAM J,KOO J. Experimental research about combustion of multi-hole pintle injector using LOx/GCH4[R]. Beijing: 27th International Colloquium on the Dynamics of Explosions and Reactive Systems,2019.
    [7] LEE Suji,KOO J,YOON Y. Technology and developing trends of pintle injector for throttleable engine[J]. Journal of the Korean Society of Propulsion Engineers,2017,21(4): 107-118. doi: 10.6108/KSPE.2017.21.4.107
    [8] RYU H,YU I,KIM W,et al. Experimental investigation on combustion performance of a pintle injector engine with double-row rectangular slot[J]. Journal of the Korean Society of Propulsion Engineers,2017,21(3): 25-33. doi: 10.6108/KSPE.2017.21.3.025
    [9] LEE S,KIM D,KOO J,et al. Spray characteristics of a pintle injector based on annular orifice area[J]. Acta Astronautica,2020,167: 201-211. doi: 10.1016/j.actaastro.2019.11.008
    [10] CHEN Huiyuan,LI Qinglian,CHENG Peng. Experimental research on the spray characteristics of pintle injector[J]. Acta Astronautica,2019,162: 424-435. doi: 10.1016/j.actaastro.2019.06.032
    [11] SAKAKI K,KAKUDO H,NAKAYA S,et al. Combustion characteristics of ethanol/liquid-oxygen rocket-engine combustor with planar pintle injector[J]. Journal of Propulsion and Power,2017,33(2): 514-521. doi: 10.2514/1.B36144
    [12] SAKAKI K,KAKUDO H,NAKAYA S,et al. Performance evaluation of rocket engine combustors using ethanol/liquid oxygen pintle injector[R]. AIAA2016-5080,2016.
    [13] KIM H,KANG H,KWON S. Liquid sheet-sheet impinging structure for pintle injector with nontoxic hypergolic bipropellant[J]. Journal of Propulsion and Power,2019,36(2): 302-307.
    [14] 成鹏. 变推力火箭发动机喷雾燃烧动态过程研究[D]. 长沙: 国防科技大学,2018. CHENG Peng. The dynamics of spray combustion in variable thrust rocket engines[D]. Changsha: National University of Defense Technology,2018. (in Chinese

    CHENG Peng. The dynamics of spray combustion in variable thrust rocket engines[D]. Changsha: National University of Defense Technology, 2018. (in Chinese)
    [15] 王凯,雷凡培,杨岸龙,等. 针栓式喷注器液膜下漏率预估模型[J]. 航空动力学报,2020,35(10): 2223-2234. WANG Kai,LEI Fanpei,YANG Anlong,et al. Prediction model of leakage rate of liquid sheet in pintle injector[J]. Journal of Aerospace Power,2020,35(10): 2223-2234. (in Chinese doi: 10.13224/j.cnki.jasp.2020.10.023

    WANG Kai, LEI Fanpei, YANG Anlong, et al. Prediction model of leakage rate of liquid sheet in pintle injector[J]. Journal of Aerospace Power, 2020, 35(10): 2223-2234. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.10.023
    [16] 王凯,雷凡培,杨岸龙,等. 径向孔形状对针栓式喷注器液膜下漏率的影响[J]. 航空学报,2021,42(6): 124384. WANG Kai,LEI Fanpei,YANG Anlong,et al. Effect of radial orifice shape on leakage rate of liquid sheet in pintle injector[J]. Acta Aeronautica et Astronautica Sinica,2021,42(6): 124384. (in Chinese

    WANG Kai, LEI Fanpei, YANG Anlong, et al. Effect of radial orifice shape on leakage rate of liquid sheet in pintle injector[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124384. (in Chinese)
    [17] 王凯,雷凡培,张波涛,等. 针栓式喷注单元雾化角模型分析[J]. 航空学报,2020,41(10): 123622. WANG Kai,LEI Fanpei,ZHANG Botao,et al. Analysis on spray angle model for pintle injector element[J]. Acta Aeronautica et Astronautica Sinica,2020,41(10): 123622. (in Chinese

    WANG Kai, LEI Fanpei, ZHANG Botao, et al. Analysis on spray angle model for pintle injector element[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123622. (in Chinese)
    [18] 王凯,雷凡培,李鹏飞,等. 壁面边界对撞击合成动量角的影响研究[J]. 推进技术,2019,40(10): 2288-2295. WANG Kai,LEI Fanpei,LI Pengfei,et al. Effects of wall boundary on resultant momentum angle of impinging jets[J]. Journal of Propulsion Technology,2019,40(10): 2288-2295. (in Chinese doi: 10.13675/j.cnki.tjjs.180749

    WANG Kai, LEI Fanpei, LI Pengfei, et al. Effects of wall boundary on resultant momentum angle of impinging jets[J]. Journal of Propulsion Technology, 2019, 40(10): 2288-2295. (in Chinese) doi: 10.13675/j.cnki.tjjs.180749
    [19] 刘昌波,周立新,雷凡培. 雾化过程的数值模拟研究综述[J]. 火箭推进,2014,40(1): 10-17. LIU Changbo,ZHOU Lixin,LEI Fanpei. Overview on numerical simulations of primary atomization[J]. Journal of Rocket Propulsion,2014,40(1): 10-17. (in Chinese

    LIU Changbo, ZHOU Lixin, LEI Fanpei. Overview on numerical simulations of primary atomization[J]. Journal of Rocket Propulsion, 2014, 40(1): 10-17. (in Chinese)
    [20] 王凯,杨国华,李鹏飞,等. 离心式喷嘴内部流动过程数值仿真分析[J]. 火箭推进,2016,42(4): 14-20. WANG Kai,YANG Guohua,LI Pengfei,et al. Numerical simulation of internal flow process in pressure swirl injector[J]. Journal of Rocket Propulsion,2016,42(4): 14-20. (in Chinese doi: 10.3969/j.issn.1672-9374.2016.04.003

    WANG Kai, YANG Guohua, LI Pengfei, et al. Numerical simulation of internal flow process in pressure swirl injector[J]. Journal of Rocket Propulsion, 2016, 42(4): 14-20. (in Chinese) doi: 10.3969/j.issn.1672-9374.2016.04.003
    [21] INAMURA T,NAGAI N,SUNANAGA H. Improvement of spray performance of a low-pressure atomizer by conical sheet formation[J]. JSME International Journal Series B,1994,37(4): 924-930. doi: 10.1299/jsmeb.37.924
    [22] KATE R P,DAS P K,CHAKRABORTY S. An experimental investigation on the interaction of hydraulic jumps formed by two normal impinging circular liquid jets[J]. Journal of Fluid Mechanics,2007,590: 355-380. doi: 10.1017/S0022112007008063
    [23] INAMURA T. Upwash formation on splash plate atomization[J]. International Journal of Multiphase Flow,2016,85: 67-75. doi: 10.1016/j.ijmultiphaseflow.2016.05.012
    [24] INAMURA T,ENDO S,OKABE T,et al. Characteristics of liquid upwash formed on a splash plate[J]. International Journal of Multiphase Flow,2018,99: 446-453. doi: 10.1016/j.ijmultiphaseflow.2017.11.011
  • 加载中
图(23) / 表(2)
计量
  • 文章访问数:  30
  • HTML浏览量:  18
  • PDF量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-12
  • 网络出版日期:  2023-12-25

目录

    /

    返回文章
    返回