留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于骨架特性的压气机可调叶片模型特性修正

李斌 严红明 李方刚 曹传军 杜辉

李斌, 严红明, 李方刚, 等. 基于骨架特性的压气机可调叶片模型特性修正[J]. 航空动力学报, 2024, 39(7):20220459 doi: 10.13224/j.cnki.jasp.20220459
引用本文: 李斌, 严红明, 李方刚, 等. 基于骨架特性的压气机可调叶片模型特性修正[J]. 航空动力学报, 2024, 39(7):20220459 doi: 10.13224/j.cnki.jasp.20220459
LI Bin, YAN Hongming, LI Fanggang, et al. Compressor variable stator vane model performance correction based on backbone map[J]. Journal of Aerospace Power, 2024, 39(7):20220459 doi: 10.13224/j.cnki.jasp.20220459
Citation: LI Bin, YAN Hongming, LI Fanggang, et al. Compressor variable stator vane model performance correction based on backbone map[J]. Journal of Aerospace Power, 2024, 39(7):20220459 doi: 10.13224/j.cnki.jasp.20220459

基于骨架特性的压气机可调叶片模型特性修正

doi: 10.13224/j.cnki.jasp.20220459
基金项目: 国家科技重大专项(2017-Ⅱ-0001-0013)
详细信息
    作者简介:

    李斌(1990-),男,高级工程师,硕士,从事航空发动机总体性能模型开发相关工作。E-mail:libin_1860@126.com

  • 中图分类号: V231.3

Compressor variable stator vane model performance correction based on backbone map

  • 摘要:

    基于骨架特性原理,建立压气机可调叶片(VSV)变几何性能模型。介绍了压气机骨架特性处理方法的优点和适用性。基于压气机骨架特性处理方法,开发一种VSV模型修正方法,通过调整流量系数、功系数和损失系数的比例修正系数,实现压气机特性随VSV任意角度变化的高精度建模。建立自动优化方法,提高执行效率,减少人工干预。同时,与某型压气机VSV联调试验结果进行对比,相对误差达到小于0.2%的水平,验证了修正方法的正确性和精度;选用比例系数修正特定骨架特性的修正方法,可推广至压气机特性的其他二次影响修正(如雷诺数效应)。

     

  • 图 1  传统的压气机特性

    Figure 1.  Traditional compressor map

    图 2  压气机三种工作状态的效率变化示意图

    Figure 2.  Compressor efficiency map in three operation modes

    图 3  功系数-流量系数曲线

    Figure 3.  Work coefficient as a function of flow coefficient

    图 4  损失系数-功系数曲线

    Figure 4.  Loss coefficient as a function of work coefficient

    图 5  最小损失点骨架特性曲线

    Figure 5.  Min-loss points backbone characteristics

    图 6  损失系数偏移量随$\Delta \varPsi\cdot |\Delta \varPsi |$变化曲线

    Figure 6.  Loss coefficient offset as a function of $\Delta \varPsi \cdot |\Delta \varPsi |$

    图 7  虚拟马赫数随$ \Delta \varPsi $变化曲线

    Figure 7.  Virtual Mav as a function of $ \Delta \varPsi $

    图 8  骨架特性转换结果对比

    Figure 8.  Backbone map compared with test result

    图 9  VSV调节效果

    Figure 9.  Influence of change of VSV

    图 10  自动优化算法流程图

    Figure 10.  Flow chart of automatic optimization

    图 11  流量系数的修正系数

    Figure 11.  Flow coefficient scalar as a function of $ {\rm{d}}\varphi $

    图 12  功系数的修正系数

    Figure 12.  Work coefficient scalar as a function of $ {\rm{d}}\varphi $

    图 13  损失系数的修正系数

    Figure 13.  Loss coefficient scalar as a function of $ {\rm{d}}\varphi $

    图 14  0.98Nc 转速修正模型与试验特性对比

    Figure 14.  Corrected model compared with test data at 0.98Nc

    图 15  0.75Nc 转速修正模型与试验特性对比

    Figure 15.  Corrected model compared with test data at 0.75Nc

    表  1  0.98Nc转速修正模型的相对误差

    Table  1.   Relative error of corrected model at 0.98Nc

    $ {\rm{d}}\varphi $/(°)$ {\sigma _1} $/%$ {\sigma _2} $/%$ {\sigma _3} $/%
    −3.00.0930.0180.186
    −1.00.1760.0680.144
    1.00.1220.0260.145
    3.00.0750.0060.107
    下载: 导出CSV

    表  2  0.75Nc转速修正模型的相对误差

    Table  2.   Relative error of corrected model at 0.75Nc

    ${\rm{d}}\varphi $/(°)$ {\sigma _1} $/%$ {\sigma _2} $/%$ {\sigma _3} $/%
    −3.00.4300.1850.426
    −1.00.3950.2700.289
    1.00.2750.1230.394
    3.00.2920.0900.367
    下载: 导出CSV
  • [1] RIEGLER C,BAUER M,KURZKE J. Some aspects of modeling compressor behavior in gas turbine performance calculations[J]. Journal of Turbomachinery,2001,123(2): 372-378. doi: 10.1115/1.1368123
    [2] 饶高,苏三买,翟向博. 指数外推法和支持向量机相结合的压气机特性扩展方法[J]. 航空动力学报,2017,32(3): 749-755.

    RAO Gao,SU Sanmai,ZHAI Xiangbo. Method of compressor characteristic extension combining exponent extrapolation method with support vector machine[J]. Journal of Aerospace Power,2017,32(3): 749-755. (in Chinese)
    [3] 黄向华,郑绪生. 基于逐级叠加法的航空发动机起动模型研究[J]. 航空学报,2005,26(5): 540-544.

    HUANG Xianghua,ZHENG Xusheng. Research on startup model of aircraft engine based on stage-stacking method[J]. Acta Aeronautica et Astronautica Sinica,2005,26(5): 540-544. (in Chinese)
    [4] 王宇,刘建勋,李应红,等. 基于抛物线外推的压气机低转速特性研究[J]. 航空动力学报,2009,24(5): 1136-1142.

    WANG Yu,LIU Jianxun,LI Yinghong,et al. Research on low speed characteristics of compressor based on parabola extrapolation[J]. Journal of Aerospace Power,2009,24(5): 1136-1142. (in Chinese)
    [5] 王广,李军,牟牧. 航空发动机叶轮机部件低状态特性的指数预测方法[J]. 航空动力学报,2005,20(6): 1032-1036.

    WANG Guang,LI Jun,MU Mu. Exponent extrapolation method of aero-engine turbomahinery low state characteristics[J]. Journal of Aerospace Power,2005,20(6): 1032-1036. (in Chinese)
    [6] 杨欣毅,沈伟,刘海峰,等. 一种应用滑动最小二乘求取压气机特性的方法[J]. 航空动力学报,2009,24(8): 1741-1746.

    YANG Xinyi,SHEN Wei,LIU Haifeng,et al. Compressor characteristics generation method using moving least square[J]. Journal of Aerospace Power,2009,24(8): 1741-1746. (in Chinese)
    [7] 刘建勋,于焕义,刘同胜,等. 轴流压气机低转速特性表达方式的改进及应用[J]. 航空计算技术,2009,39(2): 14-17. doi: 10.3969/j.issn.1671-654X.2009.02.004

    LIU Jianxun,YU Huanyi,LIU Tongsheng,et al. Improved description of axial compressor characteristics and its application[J]. Aeronautical Computing Technique,2009,39(2): 14-17. (in Chinese) doi: 10.3969/j.issn.1671-654X.2009.02.004
    [8] 周通,黄兴,刘渊,等. 某型压气机低转速特性扩展方法对比分析[J]. 航空发动机,2018,44(3): 65-70.

    ZHOU Tong,HUANG Xing,LIU Yuan,et al. Comparative analysis of index expansion method for low speed characteristics of certain compressor[J]. Aeroengine,2018,44(3): 65-70. (in Chinese)
    [9] CONVERSE G L, GIFFIN R. Extended parametric representation of compressor fans and turbines: Volume 1 CMGEN user’s manual[R]. NASA-CR-174645, 1984.
    [10] COVERSE G L. Extended parametric representation of compressor fans and turbines: Volume 2 part user’s manual (parametric turbine) [R]. NASA-CR-174646, 1984.
    [11] CONVERSE G L, GIFFIN R. Extended parametric representation of compressor fans and turbines: Volume 1 CMGEN user’s manual[R]. NASA-CR-174647, 1984.
    [12] VISHAL S. Advanced performance simulation of gas turbine components and fluid thermodynamic properties[D]. Bedfordshire, UK: Cranfield University, 2008.
    [13] 施洋,屠秋野,严红明,等. 一种航空发动机全状态性能模型[J]. 航空动力学报,2017,32(2): 373-381.

    SHI Yang,TU Qiuye,YAN Hongming,et al. A full states performance model for aero engine[J]. Journal of Aerospace Power,2017,32(2): 373-381. (in Chinese)
    [14] 施洋. 民用大涵道比涡扇发动机全状态性能模型研究[D]. 西安: 西北工业大学, 2017.

    SHI Yang. A research on full states performance model for civil high bypass turbofan engine[D]. Xi’an: Northwestern Polytechnical University, 2017. (in Chinese)
    [15] 胡骏, 吴铁鹰, 曹人靖. 航空叶片机原理[M]. 北京: 国防工业出版社, 2006.
    [16] 张健,任铭林. 静叶角度调节对压气机性能影响的试验研究[J]. 航空动力学报,2000,15(1): 27-30.

    ZHANG Jian,REN Minglin. Experimental investigation on effect of stator vane angle adjustment on compressor performance[J]. Journal of Aerospace Power,2000,15(1): 27-30. (in Chinese)
    [17] 夏联,崔健,顾扬. 可调静叶对压气机低速性能影响的试验研究[J]. 燃气涡轮试验与研究,2005,18(1): 31-34.

    XIA Lian,CUI Jian,GU Yang. An experimental investigation on the effect of variable stator vane angle on compressor performance at low speed[J]. Gas Turbine Experiment and Research,2005,18(1): 31-34. (in Chinese)
    [18] 张晓诗,李游. 某型高压压气机低转速可调静叶角度优化试验研究[J]. 装备制造技术,2020(5): 50-52.

    ZHANG Xiaoshi,LI You. Variable stator vane schedule optimization for a high-pressure compressor at low speed[J]. Equipment Manufacturing Technology,2020(5): 50-52. (in Chinese)
    [19] WALSH P P, FLETCHER P. Gas turbine performance[M]. 2nd ed. Malden, MA, US: Blackwell Science, 2004.
    [20] 周红. 变循环发动机特性分析及其与飞机一体化设计研究[D]. 西安: 西北工业大学, 2016.

    ZHOU Hong. Investigation on the variable cycle engine characteristics and integration design with aircraft[D]. Xi’an: Northwestern Polytechnical University, 2016. (in Chinese)
    [21] 马文通,苏明,余南华. 变几何多级轴流式压气机特性估算[J]. 中国电机工程学报,2008,28(11): 72-76.

    MA Wentong,SU Ming,YU Nanhua. Characteristic estimation method of variable geometry multistage axial-flow compressors[J]. Proceedings of the CSEE,2008,28(11): 72-76. (in Chinese)
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  50
  • HTML浏览量:  55
  • PDF量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-26
  • 网络出版日期:  2023-09-22

目录

    /

    返回文章
    返回