留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

颗粒物沉积与平板气膜冷却耦合效应的数值研究

伍赫 郝子晗 杨星 丰镇平

伍赫, 郝子晗, 杨星, 等. 颗粒物沉积与平板气膜冷却耦合效应的数值研究[J]. 航空动力学报, 2024, 39(5):20220462 doi: 10.13224/j.cnki.jasp.20220462
引用本文: 伍赫, 郝子晗, 杨星, 等. 颗粒物沉积与平板气膜冷却耦合效应的数值研究[J]. 航空动力学报, 2024, 39(5):20220462 doi: 10.13224/j.cnki.jasp.20220462
WU He, HAO Zihan, YANG Xing, et al. Numerical study on coupling effects of particle deposition and film cooling over flat plate surfaces[J]. Journal of Aerospace Power, 2024, 39(5):20220462 doi: 10.13224/j.cnki.jasp.20220462
Citation: WU He, HAO Zihan, YANG Xing, et al. Numerical study on coupling effects of particle deposition and film cooling over flat plate surfaces[J]. Journal of Aerospace Power, 2024, 39(5):20220462 doi: 10.13224/j.cnki.jasp.20220462

颗粒物沉积与平板气膜冷却耦合效应的数值研究

doi: 10.13224/j.cnki.jasp.20220462
基金项目: 国家自然科学基金(51906185); 中国博士后科学基金会“博士后创新人才支持计划”(BX20180284)
详细信息
    作者简介:

    伍赫(1997-),男,硕士生,主要研究方向为航空发动机涡轮部件的传热与冷却结构设计

    通讯作者:

    杨星(1990-),男,副教授、博士生导师,博士,主要从事涡轮叶片传热与冷却技术、颗粒物沉积效应研究。E-mail:x.yang@xjtu.edu.cn

  • 中图分类号: V231.1

Numerical study on coupling effects of particle deposition and film cooling over flat plate surfaces

  • 摘要:

    基于颗粒物沉积模型与动网格技术,研究了不同冷气质量流量比与颗粒物直径下气膜冷却平板表面的沉积特性及颗粒形成沉积物后对平板气膜冷却性能的影响。结果表明:在颗粒速度较低时,冷气射流对颗粒的吹拂作用使其难以在气膜孔下游沉积,且冷气射流结构对颗粒的阻隔与卷吸作用使得气膜孔下游两侧形成明显的脊状沉积带;平板表面的沉积效率随颗粒直径的变化呈现双峰分布;在较大的质量流量比下,冷气射流两侧拢起的脊状沉积带会使得气膜冷却效率显著提高,相比沉积前最大提升了6.15%;同时,颗粒沉积物能增强冷气的横向扩散,使得横向平均冷却效率有一定程度的提升。总体而言,颗粒沉积物对气膜冷却性能的影响由沉积分布特征与沉积量共同决定。

     

  • 图 1  动网格示意图

    Figure 1.  Schematic of dynamic mesh

    图 2  圆柱气膜孔平板通道计算模型

    Figure 2.  Computation model of flat plate with cylindrical film hole

    图 3  不同网格数量下中心线气膜冷却效率

    Figure 3.  Centerline film cooling effectiveness with different meshes

    图 4  湍流模型验证(M=0.5)

    Figure 4.  Turbulence model validation (M=0.5)

    图 5  颗粒沉积模型验证

    Figure 5.  Validation of particle deposition model

    图 6  不同冷气质量流量比下平板表面沉积量分布

    Figure 6.  Deposition distribution on plate surface with different coolant mass flow ratio

    图 7  沉积效率随冷气质量流量比的变化

    Figure 7.  Variation of capture efficiency with coolant mass flow ratio

    图 8  x/d=5截面颗粒相质量浓度分布

    Figure 8.  Distribution of particle concentration on x/d=5 plane

    图 9  平板表面沉积厚度分布(treal=500 h)

    Figure 9.  Distribution of deposition thickness on flat plate surface (treal=500 h)

    图 10  平板表面横向平均沉积厚度(treal=500 h)

    Figure 10.  Laterally-averaged deposition thickness on flat plate surface (treal=500 h)

    图 11  不同质量流量比下沉积前和沉积后平板表面气膜冷却效率分布

    Figure 11.  Film cooling effectiveness on flat plate surface with different mass flow ratios before and after deposition

    图 12  不同质量流量比下沉积前后中心线气膜冷却效率对比

    Figure 12.  Centerline film cooling effectiveness with different mass flow ratios before and after deposition

    图 13  沉积前后横向平均气膜冷却效率对比

    Figure 13.  Laterally-averaged film cooling effectiveness with different mass flow ratios before and after deposition

    图 14  不同质量流量比沉积前后面平均气膜冷却效率对比

    Figure 14.  Area-averaged film cooling effectiveness with different mass flow ratios before and after deposition

    图 15  不同斯托克斯数下平板表面沉积量分布情况

    Figure 15.  Distributions of deposition on flat plate with different Stokes numbers

    图 16  沉积效率随斯托克斯数的变化

    Figure 16.  Variation of capture efficiency with Stokes number

    图 17  不同斯托克斯数下沉积前后平板表面气膜冷却效率分布($\gamma $=1.0%)

    Figure 17.  Film cooling effectiveness with different Stokes numbers before and after deposition ($\gamma$=1.0%)

    图 18  不同斯托克斯数下沉积前后中心线冷却效率对比

    Figure 18.  Centerline film cooling effectiveness with different Stokes numbers before and after deposition

    图 19  不同斯托克斯数下沉积前后横向平均冷却效率对比

    Figure 19.  Laterally-averaged film cooling effectiveness with different Stokes number before and after deposition

    图 20  不同斯托克斯数下沉积前后面平均冷却效率对比

    Figure 20.  Area-averaged film cooling effectiveness with different Stokes number before and after deposition

    表  1  颗粒直径与斯托克斯数的对应关系

    Table  1.   Particle diameter and Stokes number

    颗粒直径dp/μm斯托克斯数St
    10.016
    50.403
    101.613
    206.454
    3014.521
    4025.815
    5040.336
    6058.084
    7079.059
    80103.261
    下载: 导出CSV
  • [1] DUNN M G. Operation of gas turbine engines in an environment contaminated with volcanic ash[J]. Journal of Turbomachinery,2012,134(5): 051001. doi: 10.1115/1.4006236
    [2] KIM J,DUNN M G,BARAN A J,et al. Deposition of volcanic materials in the hot sections of two gas turbine engines[J]. Journal of Engineering for Gas Turbines and Power,1993,115(3): 641-651. doi: 10.1115/1.2906754
    [3] 杨星,郝子晗,丰镇平. 颗粒污染物在涡轮中的沉积效应[J]. 航空动力,2020(1): 27-31.

    YANG Xing,HAO Zihan,FENG Zhenping. Deposition effects of particles in turbines[J]. Aerospace Power,2020(1): 27-31. (in Chinese)
    [4] DRING R P,CASPAR J R,SUO M. Particle trajectories in turbine cascades[J]. Journal of Energy,1979,3(3): 161-166. doi: 10.2514/3.47996
    [5] JENSEN J W,SQUIRE S W,BONS J P,et al. Simulated land-based turbine deposits generated in an accelerated deposition facility[J]. Journal of Turbomachinery,2005,127(3): 462-470. doi: 10.1115/1.1860380
    [6] CROSBY J M,LEWIS S,BONS J P,et al. Effects of temperature and particle size on deposition in land based turbines[J]. Journal of Engineering for Gas Turbines and Power,2008,130(5): 819-825.
    [7] LAWSON S A, THOLE K A, OKITA Y, et al. Simulations of multi-phase particle deposition on a showerhead with staggered film-cooling holes[C]//Proceedings of ASME Turbo Expo. Vancouver, Canada: ASME, 2011: 91-103.
    [8] YANG Xing,HAO Zihan,FENG Zhenping. An experimental study on turbine vane Leading-Edge film cooling with deposition[J]. Applied Thermal Engineering,2021,198: 117447. doi: 10.1016/j.applthermaleng.2021.117447
    [9] LAWSON S, THOLE K. Simulations of multi-phase particle deposition on endwall film-cooling holes in transverse trenches[C]//Proceedings of ASME Turbo Expo. Vancouver, Canada: ASME, 2011: 79-90.
    [10] ALBERT J E,BOGARD D G. Experimental simulation of contaminant deposition on a film-cooled turbine vane pressure side with a trench[J]. Journal of Turbomachinery,2013,135(5): 051008. doi: 10.1115/1.4007821
    [11] LYNCH S P,THOLE K A,KOHLI A,et al. Computational predictions of heat transfer and film-cooling for a turbine blade with nonaxisymmetric endwall contouring[J]. Journal of Turbomachinery,2011,133(4): 1.
    [12] 周君辉,张靖周. 涡轮叶栅内粒子沉积特性的数值研究[J]. 航空学报,2013,34(11): 2492-2499. doi: 10.7527/S1000-6893.2013.0216

    ZHOU Junhui,ZHANG Jingzhou. Numerical investigation on particle deposition characteristic inside turbine cascade[J]. Acta Aeronautica et Astronautica Sinica,2013,34(11): 2492-2499. (in Chinese) doi: 10.7527/S1000-6893.2013.0216
    [13] 杨晓军,祝佳雄. 涡轮叶栅通道内颗粒物沉积过程的数值模拟[J]. 航空学报,2017,38(5): 120530.

    YANG Xiaojun,ZHU Jiaxiong. Numerical simulation of particle deposition process inside turbine cascade[J]. Acta Aeronautica et Astronautica Sinica,2017,38(5): 120530. (in Chinese)
    [14] YANG Xing,HAO Zihan,FENG Zhenping. Particle deposition patterns on high-pressure turbine vanes with aggressive inlet swirl[J]. Chinese Journal of Aeronautics,2022,35(3): 75-89. doi: 10.1016/j.cja.2021.06.005
    [15] HAO Z H,YANG X,FENG Z. Unsteady simulations of migration and deposition of fly-ash particles in the first-stage turbine of an aero-engine[J]. The Aeronautical Journal,2021,125(1291): 1566-1586. doi: 10.1017/aer.2021.27
    [16] YANG Xing,HAO Zihan,FENG Zhenping. Variations of cooling performance on turbine vanes due to incipient particle deposition[J]. Proceedings of the Institution of Mechanical Engineers: Part A Journal of Power and Energy,2021,235(8): 1832-1846. doi: 10.1177/09576509211010530
    [17] 杨星,郝子晗,丰镇平. 考虑进口旋流的涡轮静叶流动传热的颗粒物沉积效应[J]. 西安交通大学学报,2021,55(7): 61-70. doi: 10.7652/xjtuxb202107007

    YANG Xing,HAO Zihan,FENG Zhenping. Particle deposition effect of the flow and heat transfer in a turbine vane passage with inlet swirl[J]. Journal of Xi’an Jiaotong University,2021,55(7): 61-70. (in Chinese) doi: 10.7652/xjtuxb202107007
    [18] 赵静宇. 颗粒在平板气膜冷却壁面沉积机理研究[D]. 西安: 西北工业大学, 2017.

    ZHAO Jingyu. Investigations of particle deposition mechanism on the flat plate wall with film cooling holes[D]. Xi’an: Northwestern Polytechnical University, 2017. (in Chinese)
    [19] BRACH R M,DUNN P F. A mathematical model of the impact and adhesion of microsphers[J]. Aerosol Science and Technology,1992,16(1): 51-64. doi: 10.1080/02786829208959537
    [20] EL-BATSH H, HASELBACHER H. Numerical investigation of the effect of ash particle deposition on the flow field through turbine cascades[C]//Proceedings of ASME Turbo Expo. Amsterdam: ASME, 2002: 1035-1043.
    [21] SINHA A K,BOGARD D G,CRAWFORD M E. Film-cooling effectiveness downstream of a single row of holes with variable density ratio[J]. Journal of Turbomachinery,1991,113(3): 442-449. doi: 10.1115/1.2927894
    [22] AI Weiguo,FLETCHER T H. Computational analysis of conjugate heat transfer and particulate deposition on a high pressure turbine vane[J]. Journal of Turbomachinery,2012,134(4): 041020. doi: 10.1115/1.4003716
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  75
  • HTML浏览量:  44
  • PDF量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-27
  • 网络出版日期:  2023-10-13

目录

    /

    返回文章
    返回