留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蠕变-疲劳耦合作用下推力室内壁结构损伤分析

王红建 王超 施蔚 杜大华

王红建, 王超, 施蔚, 等. 蠕变-疲劳耦合作用下推力室内壁结构损伤分析[J]. 航空动力学报, 2024, 39(7):20220481 doi: 10.13224/j.cnki.jasp.20220481
引用本文: 王红建, 王超, 施蔚, 等. 蠕变-疲劳耦合作用下推力室内壁结构损伤分析[J]. 航空动力学报, 2024, 39(7):20220481 doi: 10.13224/j.cnki.jasp.20220481
WANG Hongjian, WANG Chao, SHI Wei, et al. Damage analysis of thrust chamber wall structure under the creep-fatigue interaction[J]. Journal of Aerospace Power, 2024, 39(7):20220481 doi: 10.13224/j.cnki.jasp.20220481
Citation: WANG Hongjian, WANG Chao, SHI Wei, et al. Damage analysis of thrust chamber wall structure under the creep-fatigue interaction[J]. Journal of Aerospace Power, 2024, 39(7):20220481 doi: 10.13224/j.cnki.jasp.20220481

蠕变-疲劳耦合作用下推力室内壁结构损伤分析

doi: 10.13224/j.cnki.jasp.20220481
详细信息
    作者简介:

    王红建(1968-),男,副教授、硕士生导师,博士,主要从事结构失效与抗疲劳设计技术研究

    通讯作者:

    王超(1998-),男,硕士生,主要从事结构失效与抗疲劳设计技术研究。E-mail:wangc_@mail.nwpu.edu.cn

  • 中图分类号: V434+.24

Damage analysis of thrust chamber wall structure under the creep-fatigue interaction

  • 摘要:

    可重复使用液体火箭发动机能大幅降低航天运输成本,其中推力室内壁结构的循环使用寿命是影响可重复使用性能的关键因素。基于Chaboche随动强化模型和Norton蠕变模型建立推力室内壁材料的本构方程;采用瞬态热-力耦合分析方法,获得推力室各工况下的温度场与应力-应变分布;通过Lagneborg累积损伤法建立损伤模型,其中考虑了蠕变-疲劳的耦合作用,以预测内壁结构损伤及循环寿命。研究结果表明:推力室内壁结构损伤形式以低周疲劳损伤和蠕变-疲劳耦合损伤为主,其中低周疲劳损伤占比65.8%,蠕变-疲劳交互作用损伤占比29.8%,因此为了准确预测推力室内壁结构的循环使用寿命,需考虑结构在蠕变-疲劳耦合损伤作用下的影响因素。

     

  • 图 1  单通道喉部扇区几何模型

    Figure 1.  Single channel throat sector geometry

    图 2  喉部扇区有限元模型

    Figure 2.  Throat sector finite element model

    图 3  一个循环下冷却剂壁面压力载荷变化

    Figure 3.  Variation of coolant wall pressure load under one cycle

    图 4  瞬态热分析结果

    Figure 4.  Transient thermal analysis results

    图 5  各阶段环向应变分布图

    Figure 5.  Circumferential strain distribution at each stage

    图 6  选取截面示意图

    Figure 6.  Select cross-section schematic

    图 7  截面1 不同阶段环向应变分布

    Figure 7.  Section 1 circumferential strain distribution at different stages

    图 8  截面1上P4点单循环各应变分量变化

    Figure 8.  Variation of each strain component in a single cycle at point P4 on section 1

    表  1  不同温度下Chaboche模型参数

    Table  1.   Chaboche model parameters at different temperatures

    温度/K${C_{ {{\rm{C}},1 } } } $/MPa${C_{ {{\rm{C}},2 } } } $/MPa${C_{ {{\rm{C}},3 } } } $/MPa$ {\gamma _1} $$ {\gamma _2} $$ {\gamma _3} $
    27.155762.813657188121375962085.8
    295.15213264041151181884118393.2
    533.15199708634818219354122901617.3
    811.15209402629.72094110911231090.9
    下载: 导出CSV

    表  2  Norton蠕变模型参数

    Table  2.   Norton creep model parameters

    温度/K${C_{ {{\rm{N}},1 } } }$${C_{ {{\rm{N}},2 } } }$${C_{ {{\rm{N}},3 } } }$
    293~7730.974261.763911529
    773~9232.745×10150.871311579
    923~10731.098×10170.904311593
    下载: 导出CSV

    表  3  交互作用系数计算表

    Table  3.   Interaction coefficient calculation table

    总应变范围/%蠕变-疲劳失效
    循环数
    蠕变-疲劳失效
    保载时间/s
    疲劳损伤蠕变损伤交互作用
    系数$H$
    蠕变-疲劳
    交互损伤
    2.6102306000.40320.15471.77120.4424
    2.675225000.29640.11373.21340.5899
    0.9262786000.22410.33421.61420.4418
    0.9317951000.27120.40440.98010.3246
    下载: 导出CSV

    表  4  各考察点损伤计算

    Table  4.   Damage calculation for each inspection point

    考察点等效应变
    范围/%
    单次循环
    疲劳损伤/10−4
    单次循环
    蠕变损伤/10−4
    交互乘积项单次循环
    交互损伤/10−4
    1-P30.7423.53231.32111.22062.7115
    1-P41.67325.5101.70661.745311.516
    2-P30.7463.62191.36681.22252.7200
    2-P41.61724.2131.74691.707711.106
    3-P30.6973.00841.18681.19982.2671
    3-P41.33014.9251.72411.53007.7612
    下载: 导出CSV

    表  5  各考察点寿命预测值

    Table  5.   Life expectancy at each inspection point

    考察点等效应变
    范围/%
    单次循环
    总损伤/10−3
    N疲劳损伤
    占比/%
    蠕变损伤
    占比/%
    交互损伤
    占比/%
    1-P30.7423.026033046.717.435.9
    1-P41.67315.4936465.84.429.8
    2-P30.7463.083532447.017.735.3
    2-P41.61714.8266765.34.730.0
    3-P30.6972.584938646.518.435.1
    3-P41.3309.764010261.17.131.8
    下载: 导出CSV
  • [1] 丁兆波,孙纪国. 推力室内壁热结构寿命预估及延寿技术研究[J]. 推进技术,2013,34(8): 1088-1094.

    DING Zhaobo,SUN Jiguo. Studies on life-prediction and life-enhancing technology for regenerative cooling channel[J]. Journal of Propulsion Technology,2013,34(8): 1088-1094. (in Chinese)
    [2] 丁兆波,王珏. 氢氧推力室内壁用铜合金疲劳及蠕变性能研究[J]. 航天制造技术,2021(5): 30-34,39.

    DING Zhaobo,WANG Jue. Experimental study on fatigue and creep properties of LOX/LH2 thrust chamber copper alloy liner wall[J]. Aerospace Manufacturing Technology,2021(5): 30-34,39. (in Chinese)
    [3] 张绿云,曲晶,龙雪丹,等. 2018年国外航天运载器发展分析[J]. 导弹与航天运载技术,2019(1): 36-39,44.

    ZHANG Lvyun,QU Jing,LONG Xuedan,et al. Review of world launch vehicle in 2018[J]. Missiles and Space Vehicles,2019(1): 36-39,44. (in Chinese)
    [4] 朱坤,杨铁成,周宁. 从低成本角度探讨航天运载器技术发展路线[J]. 飞航导弹,2021(6): 1-6,13.

    ZHU Kun,YANG Tiecheng,ZHOU Ning. Discussion on the development route of space launch vehicle technology from the perspective of low cost[J]. Aerodynamic Missile Journal,2021(6): 1-6,13. (in Chinese)
    [5] RICCIUS J, HAIDN O, ZAMETAEV E. Influence of time dependent effects on the estimated life time of liquid rocket combustion chamber walls[R]. AIAA 2004-3670, 2004.
    [6] MILLER R. Low-cycle fatigue analysis of a cooled copper combustion chamber[R]. AIAA 74-1079, 1974.
    [7] COOK R, COFFEY G. Space shuttle orbiter engine main combustion chamber cooling and life[R]. AIAA TP73-1310, 1973.
    [8] 郭冰彬. 铸造铝合金压蠕变与低周疲劳耦合特性研究与应用[D]. 北京: 北京理工大学, 2016.

    GUO Bingbin. Study on the coupling characteristics of compression creep and low cycle fatigue of cast aluminum and it’s application[D]. Beijing: Beijing Institute of Technology, 2016. (in Chinese)
    [9] SUNG I K, ANDERSON W. A subscale-based rocket combustor life prediction methodology[R]. AIAA 2005-3570, 2005.
    [10] 孙冰,丁兆波,康玉东. 液体火箭发动机推力室内壁寿命预估[J]. 航空动力学报,2014,29(12): 2980-2986.

    SUN Bing,DING Zhaobo,KANG Yudong. Life prediction of liquid rocket engine thrust chamber liner wall[J]. Journal of Aerospace Power,2014,29(12): 2980-2986. (in Chinese)
    [11] RICCIUS J, ZAMETAEV E, HAIDN O. Comparison of 2D and 3D structural FE-analyses of LRE combustion chamber walls[R]. AIAA 2006-4368, 2006.
    [12] LAGNEBORG R,ATTERMO R. The effect of combined low-cycle fatigue and creep on the life of austenitic stainless steels[J]. Metallurgical Transactions,1971,2(7): 1821-1827. doi: 10.1007/BF02913411
    [13] 谭晓惠,马建中,刘宇杰,等. 316不锈钢蠕变-疲劳交互作用试验研究[J]. 核动力工程,2013,34(1): 140-145.

    TAN Xiaohui,MA Jianzhong,LIU Yujie,et al. Experimental study on creep/fatigue interaction correlation[J]. Nuclear Power Engineering,2013,34(1): 140-145. (in Chinese)
    [14] 彭鸿博,张宏建. 金属材料本构模型的研究进展[J]. 机械工程材料,2012,36(3): 5-10, 75.

    PENG Hongbo,ZHANG Hongjian. Research development of the constitutive models of metal materials[J]. Materials for Mechanical Engineering,2012,36(3): 5-10, 75. (in Chinese)
    [15] ELLIS D, MICHAL G M. Mechanical and thermal properties of two Cu-Cr-Nb alloys and NARloy-Z[R]. NASA-CR-198529, 1996
    [16] 康玉东,孙冰. 燃气非平衡流再生冷却流动传热数值模拟[J]. 推进技术,2011,32(1): 119-124.

    KANG Yudong,SUN Bing. Numerical simulation of regeneraive cooling flow and heat transfer with nonequilibrium flow[J]. Journal of Propulsion Technology,2011,32(1): 119-124. (in Chinese)
    [17] 陈立佳,王中光,田继丰,等. 镍基高温合金的蠕变-疲劳交互作用行为及寿命预测[J]. 航空材料学报,1998,18(3): 1-7,15.

    CHEN Lijia,WANG Zhongguang,TIAN Jifeng,et al. Creep fatigue interaction behavior of a nickel based superalloy and lifetime prediction[J]. Journal of Aeronautical Materials,1998,18(3): 1-7,15. (in Chinese)
    [18] 杜大华,王珺,王红建,等. 液体火箭发动机涡轮盘低周疲劳寿命预测[J]. 火箭推进,2020,46(6): 13-21.

    DU Dahua,WANG Jun,WANG Hongjian,et al. Low cycle fatigue life prediction of a liquid rocket engine turbine disk[J]. Journal of Rocket Propulsion,2020,46(6): 13-21. (in Chinese)
    [19] WILSHIRE B. New high-precision creep procedures for accurate life extension of plant[J]. International Journal of Pressure Vessels and Piping,1989,39(1/2): 73-82.
    [20] PIZZARELLI M. An algebraic model for structural and life analysis of regeneratively-cooled thrust chambers[J]. Journal of Propulsion and Power,2020,36(2): 191-201. doi: 10.2514/1.B37669
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  160
  • HTML浏览量:  38
  • PDF量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-04
  • 网络出版日期:  2023-09-27

目录

    /

    返回文章
    返回