留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲击+扰流柱双层壁冷却结构的强化换热性能及流阻特性

韦宏 祖迎庆

韦宏, 祖迎庆. 冲击+扰流柱双层壁冷却结构的强化换热性能及流阻特性[J]. 航空动力学报, 2024, 39(8):20220489 doi: 10.13224/j.cnki.jasp.20220489
引用本文: 韦宏, 祖迎庆. 冲击+扰流柱双层壁冷却结构的强化换热性能及流阻特性[J]. 航空动力学报, 2024, 39(8):20220489 doi: 10.13224/j.cnki.jasp.20220489
WEI Hong, ZU Yingqing. Enhanced heat transfer performance and flow resistance characteristics of the double-wall cooling structures with jet impingement and pin fins[J]. Journal of Aerospace Power, 2024, 39(8):20220489 doi: 10.13224/j.cnki.jasp.20220489
Citation: WEI Hong, ZU Yingqing. Enhanced heat transfer performance and flow resistance characteristics of the double-wall cooling structures with jet impingement and pin fins[J]. Journal of Aerospace Power, 2024, 39(8):20220489 doi: 10.13224/j.cnki.jasp.20220489

冲击+扰流柱双层壁冷却结构的强化换热性能及流阻特性

doi: 10.13224/j.cnki.jasp.20220489
基金项目: 上海市自然科学基金(19ZR1402500); 上海市商用航空发动机领域联合创新计划(AR908,AR960)
详细信息
    作者简介:

    韦宏(1988-),男,讲师,博士,主要从事航空发动机热端部件冷却技术方面的研究。E-mail:weih16@fudan.edu.cn

    通讯作者:

    祖迎庆(1978-),男,副研究员、博士生导师,博士,主要从事航空发动机气动热力学方面的研究。E-mail: yzu@fudan.edu.cn

  • 中图分类号: V231.1

Enhanced heat transfer performance and flow resistance characteristics of the double-wall cooling structures with jet impingement and pin fins

  • 摘要:

    对于冲击+扰流柱的双层壁冷却结构,为了研究冲击孔的无量纲排间距和无量纲孔间距、扰流柱的无量纲直径以及冲击射流雷诺数对其强化换热性能以及其流阻特性的影响,基于多种几何参数和流动参数对冲击+扰流柱的双层壁冷却结构进行了实验研究,并根据实验工况开展了相应的数值模拟。结果表明:在带有扰流柱的整个冲击靶板内表面上,面平均努塞尔数随着射流雷诺数的增大而单调增大,且基本上呈现为线性增长的趋势。总体而言,在扰流柱表面的面平均努塞尔数略高于冲击靶板内壁面的面平均努塞尔数。随着扰流柱的无量纲直径的增大,在双层壁冷却结构的整个内表面的面平均努塞尔数呈现为先下降后增大的趋势。此外,在整个内表面的面平均努塞尔数随着冲击孔的无量纲排间距的增大而减小;但是,面平均努塞尔数对无量纲孔间距变化的响应不敏感。对于冲击+扰流柱双层壁冷却结构的流量系数,它随着射流雷诺数以及冲击孔的无量纲排间距和无量纲孔间距的增大而增大,但是随着扰流柱的无量纲直径的增大而减小。

     

  • 图 1  冲击+扰流柱双层壁冷却结构的实验系统示意图

    Figure 1.  Schematic diagram of experimental system of double-wall cooling structure with jet impingement holes and pin fins

    图 2  冲击+扰流柱双层壁冷却结构强化换热的实验件

    Figure 2.  Test piece of strengthen heat transfer of double-wall cooling structure with jet impingement holes and pin fins

    图 3  冲击+扰流柱双层壁冷却结构的冲击靶板实物图

    Figure 3.  Physical drawing of the jet impingement target plate of the double-wall cooling structure with jet impingement holes and pin fins

    图 4  T型热电偶和扰流柱的相对布置位置 (单位:mm)

    Figure 4.  Relative positions of the T-type thermocouples and pin fins (unit: mm)

    图 5  T型热电偶实时采集的温度数据曲线(X/D=3、Y/D=3、Dp/D=1、Re=17500)

    Figure 5.  Real-time temperature data curves collected by T-type thermocouples (X/D=3, Y/D=3, Dp/D=1, Re=17500)

    图 6  面平均努塞尔数$ \overline{\overline{Nu}} $随着射流雷诺数Re的变化情况

    Figure 6.  Variation of area-averaged Nusselt number $ \overline{\overline{Nu}} $ with the jet Reynolds number Re

    图 7  双层壁冷却结构的计算域和边界条件的设置

    Figure 7.  Computational domain and boundary conditions setting of the double-wall cooling structure

    图 8  双层壁冷却结构的计算域及其网格划分

    Figure 8.  Computational domain and grid generation of the double-wall cooling structure

    图 9  强化换热结构的网格无关性分析

    Figure 9.  Grid independence analysis of the enhanced heat transfer structure

    图 10  面平均努塞尔数$ \overline{\overline{Nu}} $的数值结果与实验结果的对比

    Figure 10.  Comparisons between numerical results and experimental results of the areal averaged Nusselt number $ \overline{\overline{Nu}} $

    图 11  冲击靶板内侧壁面和扰流柱表面的努塞尔数Nu 的分布云图(X/D=3, Y/D=4)

    Figure 11.  Distributions of Nusselt number Nu on the internal wall surface of jet impingement target plate and pin fins (X/D=3, Y/D=4)

    图 12  扰流柱表面与冲击靶板内侧壁面的$\overline{ \overline{Nu} }$ 的对比

    Figure 12.  Comparison of $\overline{ \overline{Nu} }$ between the wall surface of pin fins and the internal wall surface of jet impingement target plate

    图 13  各个实验工况下冲击孔板的流量系数分布

    Figure 13.  Distribution of discharge coefficient of the jet impingement plate under various experimental conditions

    表  1  各个独立变量的相对误差

    Table  1.   Relative error of each independent variable

    参数Xi $ \left(\dfrac{\partial Nu}{\partial {X}_{i}}\cdot \dfrac{{\text{δ}} {X}_{i}}{Nu}\right)\Bigg/$%
    热通量(q ±0.70
    冲击孔直径(D ±2.0
    冷气射流温度(tc ±0.75
    靶板壁面温度(tw ±2.50
    下载: 导出CSV

    表  2  实验件的几何参数

    Table  2.   Geometrical parameters of the test pieces

    冲击孔直径
    D/mm
    冲击距离
    H/D
    冲击孔的排间距
    X/D
    冲击孔的孔间距
    Y/D
    扰流柱的直径
    Dp/D
    冲击孔和扰流柱的排布
    方式及排布示意图
    5 1 3 4 1
    4 4 1
    5 4 1
    3 3 1
    3 5 1
    3 4 2
    下载: 导出CSV
  • [1] 王磊,张靖周,杨卫华. 密集型阵列冲击射流换热特性实验[J]. 航空动力学报,2009,24(6): 1264-1269. WANG Lei,ZHANG Jingzhou,YANG Weihua. Experimental research on heat transfer characteristics of denser jet array impingement[J]. Journal of Aerospace Power,2009,24(6): 1264-1269. (in Chinese

    WANG Lei, ZHANG Jingzhou, YANG Weihua. Experimental research on heat transfer characteristics of denser jet array impingement[J]. Journal of Aerospace Power, 2009, 24(6): 1264-1269. (in Chinese)
    [2] JANG J H,CHIU H C,YAN W M. Impinging cooling of film hole surface using transient liquid crystal thermograph[J]. International Communications in Heat and Mass Transfer,2013,44: 23-30. doi: 10.1016/j.icheatmasstransfer.2013.03.009
    [3] FECHTER S,TERZIS A,OTT P,et al. Experimental and numerical investigation of narrow impingement cooling channels[J]. International Journal of Heat and Mass Transfer,2013,67: 1208-1219. doi: 10.1016/j.ijheatmasstransfer.2013.09.003
    [4] LIU Haiyong,LIU Songling,QIANG Hongfu,et al. Aerodynamic investigation of impingement cooling in a confined channel with staggered jet array arrangement[J]. Experimental Thermal and Fluid Science,2013,48: 184-197. doi: 10.1016/j.expthermflusci.2013.02.023
    [5] 单文娟,毛军逵,李毅,等. 斜向冲击强化换热特性试验[J]. 航空动力学报,2013,28(3): 701-708. SHAN Wenjuan,MAO Junkui,LI Yi,et al. Experiment on heat transfer characteristics with inclined impingement[J]. Journal of Aerospace Power,2013,28(3): 701-708. (in Chinese

    SHAN Wenjuan, MAO Junkui, LI Yi, et al. Experiment on heat transfer characteristics with inclined impingement[J]. Journal of Aerospace Power, 2013, 28(3): 701-708. (in Chinese)
    [6] LEE J,REN Zhong,LIGRANI P,et al. Crossflows from jet array impingement cooling: hole spacing,target plate distance,Reynolds number effects[J]. International Journal of Thermal Sciences,2015,88: 7-18. doi: 10.1016/j.ijthermalsci.2014.09.003
    [7] 蒋新伟,许卫疆,朱惠人. 冲击射流在凹坑壁面通道内的换热特性研究[J]. 工程热物理学报,2016,37(12): 2638-2644. JIANG Xinwei,XU Weijiang,ZHU Huiren. Study of heat transfer characteristics in a dimpled wall channel with impingement jets[J]. Journal of Engineering Thermophysics,2016,37(12): 2638-2644. (in Chinese

    JIANG Xinwei, XU Weijiang, ZHU Huiren. Study of heat transfer characteristics in a dimpled wall channel with impingement jets[J]. Journal of Engineering Thermophysics, 2016, 37(12): 2638-2644. (in Chinese)
    [8] CHEN Lingling,BRAKMANN R G A,WEIGAND B,et al. Experimental and numerical heat transfer investigation of an impingement jet array with V-ribs on the target plate and on the impingement plate[J]. International Journal of Heat and Fluid Flow,2017,68: 126-138. doi: 10.1016/j.ijheatfluidflow.2017.09.005
    [9] 蒋新伟,许卫疆,朱惠人. 带凹坑楔形通道内射流冲击换热特性实验[J]. 航空动力学报,2017,32(12): 2981-2987. JIANG Xinwei,XU Weijiang,ZHU Huiren. Experiment of impingement heat transfer characteristics in dimpled wedge channel[J]. Journal of Aerospace Power,2017,32(12): 2981-2987. (in Chinese

    JIANG Xinwei, XU Weijiang, ZHU Huiren. Experiment of impingement heat transfer characteristics in dimpled wedge channel[J]. Journal of Aerospace Power, 2017, 32(12): 2981-2987. (in Chinese)
    [10] KIM S H,AHN K H,PARK J S,et al. Local heat and mass transfer measurements for multi-layered impingement/effusion cooling: effects of pin spacing on the impingement and effusion plate[J]. International Journal of Heat and Mass Transfer,2017,105: 712-722. doi: 10.1016/j.ijheatmasstransfer.2016.10.007
    [11] RAO Yu,LIU Yuyang,WAN Chaoyi. Multiple-jet impingement heat transfer in double-wall cooling structures with pin fins and effusion holes[J]. International Journal of Thermal Sciences,2018,133: 106-119. doi: 10.1016/j.ijthermalsci.2018.07.021
    [12] 韦宏,祖迎庆. 双层壁冷却结构中多排射流冲击冷却的换热和流阻特性[J]. 航空动力学报,2021,36(8): 1621-1632. WEI Hong,ZU Yingqing. Heat transfer and flow resistance characteristics of multi-row jet impingement cooling in double-wall cooling structure[J]. Journal of Aerospace Power,2021,36(8): 1621-1632. (in Chinese doi: 10.13224/j.cnki.jasp.20200486

    WEI Hong, ZU Yingqing. Heat transfer and flow resistance characteristics of multi-row jet impingement cooling in double-wall cooling structure[J]. Journal of Aerospace Power, 2021, 36(8): 1621-1632. (in Chinese) doi: 10.13224/j.cnki.jasp.20200486
    [13] HAM J C,DUTTA S,EKKAD S. Gas turbine heat transfer and cooling technology [M]. 2nd ed. New York: Taylor & Francis Group,2012: 14-67.
    [14] MOFFAT R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science,1988,1(1): 3-17. doi: 10.1016/0894-1777(88)90043-X
    [15] JUNG E Y,PARK C U,LEE D H,et al. Effect of the injection angle on local heat transfer in a showerhead cooling with array impingement jets[J]. International Journal of Thermal Sciences,2018,124: 344-355. doi: 10.1016/j.ijthermalsci.2017.10.033
    [16] LEE K D,CHOI D W,KIM K Y. Optimization of ejection angles of double-jet film-cooling holes using RBNN model[J]. International Journal of Thermal Sciences,2013,73: 69-78. doi: 10.1016/j.ijthermalsci.2013.05.015
    [17] JIANG Yuting,ZHENG Qun,DONG Ping,et al. Conjugate heat transfer analysis of leading edge and downstream mist–air film cooling on turbine vane[J]. International Journal of Heat and Mass Transfer,2015,90: 613-626. doi: 10.1016/j.ijheatmasstransfer.2015.07.005
    [18] KE Zhaoqing,WANG Jianhua. Conjugate heat transfer simulations of pulsed film cooling on an entire turbine vane[J]. Applied Thermal Engineering,2016,109: 600-609. doi: 10.1016/j.applthermaleng.2016.08.132
    [19] JIANG Yuting,WAN Xinchao,MAGAGNATO F,et al. Multi-step optimizations of leading edge and downstream film cooling configurations on a high pressure turbine vane[J]. Applied Thermal Engineering,2018,134: 203-213. doi: 10.1016/j.applthermaleng.2018.02.012
    [20] JIANG Yuting,LIN Hongfei,YUE Guoqiang,et al. Aero-thermal optimization on multi-rows film cooling of a realistic marine high pressure turbine vane[J]. Applied Thermal Engineering,2017,111: 537-549. doi: 10.1016/j.applthermaleng.2016.09.143
    [21] 陈朔. 层板冷却单元的流动换热计算模型研究[D]. 哈尔滨: 哈尔滨工业大学,2015. CHEN Shuo. Research on calculation model of flow and heat transfer of lamilloy cooling unit[D]. Harbin: Harbin Institute of Technology,2015. (in Chinese

    CHEN Shuo. Research on calculation model of flow and heat transfer of lamilloy cooling unit[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  100
  • HTML浏览量:  68
  • PDF量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-06
  • 网络出版日期:  2023-11-29

目录

    /

    返回文章
    返回