留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抽吸位置对固冲发动机进气道性能的影响

牛雨鹏 武志文 张智慧 陈鹏鑫 张伊乔 张旭

牛雨鹏, 武志文, 张智慧, 等. 抽吸位置对固冲发动机进气道性能的影响[J]. 航空动力学报, 2024, 39(8):20220507 doi: 10.13224/j.cnki.jasp.20220507
引用本文: 牛雨鹏, 武志文, 张智慧, 等. 抽吸位置对固冲发动机进气道性能的影响[J]. 航空动力学报, 2024, 39(8):20220507 doi: 10.13224/j.cnki.jasp.20220507
NIU Yupeng, WU Zhiwen, ZHANG Zhihui, et al. Effect of suction position on inlet performance of solid rocket ramjet[J]. Journal of Aerospace Power, 2024, 39(8):20220507 doi: 10.13224/j.cnki.jasp.20220507
Citation: NIU Yupeng, WU Zhiwen, ZHANG Zhihui, et al. Effect of suction position on inlet performance of solid rocket ramjet[J]. Journal of Aerospace Power, 2024, 39(8):20220507 doi: 10.13224/j.cnki.jasp.20220507

抽吸位置对固冲发动机进气道性能的影响

doi: 10.13224/j.cnki.jasp.20220507
详细信息
    作者简介:

    牛雨鹏(1998-),男,硕士生,主要从事固体火箭冲压发动机进气道研究。E-mail:905213467@qq.com

    通讯作者:

    武志文(1978-),男,教授、博士生导师,博士,主要从事固体燃料冲压发动机研究。E-mail:bitwzw@bit.edu.cn

  • 中图分类号: V211.48

Effect of suction position on inlet performance of solid rocket ramjet

  • 摘要:

    对于设计马赫数为3的固冲发动机,用二维数值模拟的方法研究了一次燃气流量可调,即背压变化的范围较大的进气道,在不同位置设置抽吸孔对进气道不起动马赫数、抗反压能力以及总压恢复系数的影响。在内压缩段设置抽吸孔使进气道的不起动马赫数由2.7降低为2.4,抗反压能力提高了12.28%;外压缩段抽吸使进气道的不起动马赫数由2.7降为2.6,抗反压能力没有提高;而喉道段抽吸的进气道抗反压能力提高了11.24%,不起动马赫数没有变化。内压缩段和喉道段抽吸可以在一定工况下提高总压恢复,尤其是喉道段抽吸可以提高超额定工况下的总压恢复系数。最后提出了一种提高进气道在马赫数为3~5工况下运行的性能提升方案,在马赫数为4~5工况下总压恢复平均提高了5%左右。

     

  • 图 1  进气道模型

    Figure 1.  Inlet model

    图 2  上壁面压力分布

    Figure 2.  Pressure distribution on the upper side wall

    图 3  下壁面压力分布

    Figure 3.  Pressure distribution on the lower side wall

    图 4  构型1的进气道模型及网格

    Figure 4.  Inlet model and grid of configuration 1

    图 5  构型1在不同马赫数的流场

    Figure 5.  Flow field of configuration 1 at different Mach numbers

    图 6  构型1在不同马赫数下的性能参数

    Figure 6.  Performance parameters of configuration 1 at different Mach numbers

    图 7  构型1在不同背压下的流场

    Figure 7.  Flow field of configuration 1 under different back pressures

    图 8  构型1在不同背压下的性能参数

    Figure 8.  Performance parameters of configuration 1 under different back pressures

    图 9  构型2的进气道模型及网格

    Figure 9.  Inlet model and grid of configuration 2

    图 10  构型2在不同马赫数下的流场

    Figure 10.  Flow field of configuration 2 at different Mach numbers

    图 11  构型2在不同背压下的流场图

    Figure 11.  Flow field diagram of configuration 2 under different back pressures

    图 12  构型3的进气道模型及网格

    Figure 12.  Inlet model and grid of configuration 3

    图 13  构型3在不同马赫数下的流场

    Figure 13.  Flow field of configuration 3 at different Mach numbers

    图 14  构型3在不同背压下的流场图

    Figure 14.  Flow field diagram of configuration 3 under different back pressure

    图 15  构型4的进气道模型及网格

    Figure 15.  Inlet model and grid of configuration 4

    图 16  构型4在不同马赫数下的流场

    Figure 16.  Flow field of configuration 4 at different Mach numbers

    图 17  构型4在不同背压下的流场图

    Figure 17.  Flow field diagram of configuration 4 under different back pressures

    图 18  构型1、构型2、构型4在Ma=4.5工况下的流场

    Figure 18.  Flow field of configurations 1, configurations 2, configurations 4 under Ma=4.5 condition

    图 19  构型1、构型2、构型4在Ma=5工况下的流场

    Figure 19.  Flow field of configurations 1, configurations 2, configurations 4 under Ma=5 condition

    图 20  两种方案的总压恢复系数对比

    Figure 20.  Comparison of total pressure recovery between two schemes

    表  1  进气道参数

    Table  1.   Inlet parameters

    参数数值
    进气道内部宽度/mm100
    喉道段高度h/mm50
    进气道总长度L/mm1600
    来流入射角α/(°)0
    二级压缩面角度δ2/(°)21.5
    唇口角度δ3/(°)9.5
    喉道段扩张角δ4/(°)5
    设计马赫数Mad3
    下载: 导出CSV

    表  2  4种构型进气道性能对比

    Table  2.   Comparison of inlet performance of four configurations

    构型 不起动马赫数 极限反压比 总压恢复系数 出口流量/(kg/s)
    Ma=3 Ma=4 Ma=3 Ma=4
    构型1 2.7 19.22 0.577 0.335 0.89 1.20
    构型2 2.4 21.58 0.574 0.345 0.83 1.13
    构型3 2.6 18.63 0.556 0.337 0.83 1.13
    构型4 2.7 21.38 0.555 0.33 0.82 1.17
    下载: 导出CSV

    表  3  不同构型的性能参数

    Table  3.   Performance parameters of different configurations

    构型 Ma=4 Ma=4.5 Ma=5
    总压恢复系数 流量系数 总压恢复系数 流量系数 总压恢复系数 流量系数
    构型1 0.1724 1.0003 0.1946 0.9976 0.1746 0.9941
    构型2 0.1705 0.9313 0.1603 0.9431 0.1599 0.9415
    构型4 0.1481 0.9735 0.1995 0.9864 0.1742 0.9911
    下载: 导出CSV
  • [1] 张荣胜. 固冲发动机新型进气道设计与调节规律研究[D]. 南京: 南京航空航天大学,2018. ZHANG Rongsheng. Design and analysis of A new-type variable geometry solid rocket ramjet inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2018. (in Chinese

    ZHANG Rongsheng. Design and analysis of A new-type variable geometry solid rocket ramjet inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese)
    [2] 陈义. 超声速进气道起动特性研究[D]. 西安: 航天动力技术研究院,2016. CHEN Yi. Study on starting characteristics of supersonic inlet[D]. Xi’an: Academy of Aerospace Solid Propulsion Technology,2016. (in Chinese

    CHEN Yi. Study on starting characteristics of supersonic inlet[D]. Xi’an: Academy of Aerospace Solid Propulsion Technology, 2016. (in Chinese)
    [3] WIE D,KWOK F,WALSH R. Starting characteristics of supersonic inlets: AIAA-1996-2914[R]. Lake Buena Vista ,US: AIAA,1996.
    [4] 王翼. 高超声速进气道启动问题研究[D]. 长沙: 国防科学技术大学,2008. WANG Yi. Investigation on the starting characteristics of hypersonic inlet[D]. Changsha: National University of Defense Technology,2008. (in Chinese

    WANG Yi. Investigation on the starting characteristics of hypersonic inlet[D]. Changsha: National University of Defense Technology, 2008. (in Chinese)
    [5] 李祝飞. 高超声速进气道起动特性机理研究[D]. 合肥: 中国科学技术大学,2013. LI Zhufei. An investigation on starting characteristics of hypersonic inlets[D]. Hefei: University of Science and Technology of China,2013. (in Chinese

    LI Zhufei. An investigation on starting characteristics of hypersonic inlets[D]. Hefei: University of Science and Technology of China, 2013. (in Chinese)
    [6] FENG Xiping,LIN Zhiyuan,ZHENG Ya,et al. Adjusting principle of gas jet controlling inlet and numerical verification[J]. Science China Technological Sciences,2011,54(11): 2981-2986. doi: 10.1007/s11431-011-4553-3
    [7] HAWS R G,NOALL J S,DAINES R L. Computational investigation of a method to compress air fluidically in supersonic inlets[J]. Journal of Spacecraft and Rockets,2001,38(1): 51-59. doi: 10.2514/2.3654
    [8] ZHU Chengxiang,YANG Rijiong,CHEN Rongqian,et al. Investigation of adaptive slot control method for starting characteristics of hypersonic inlets[J]. Proceedings of the Institution of Mechanical Engineers,Part G: Journal of Aerospace Engineering,2019,233(11): 4261-4271.
    [9] HERRMANN D,BLEM S,GULHAN A. Experimental study of boundary-layer bleed impact on ramjet inlet performance[J]. Journal of Propulsion and Power,2011,27(6): 1186-1195. doi: 10.2514/1.B34223
    [10] 常军涛,鲍文,崔涛,等. 抽吸对高超声速进气道抗反压能力的影响[J]. 航空动力学报,2008,23(3): 505-509. CHANG Juntao,BAO Wen,CUI Tao,et al. Effect of suctions on maximum backpressure ratios of hypersonic inlets[J]. Journal of Aerospace Power,2008,23(3): 505-509. (in Chinese

    CHANG Juntao, BAO Wen, CUI Tao, et al. Effect of suctions on maximum backpressure ratios of hypersonic inlets[J]. Journal of Aerospace Power, 2008, 23(3): 505-509. (in Chinese)
    [11] 袁化成,梁德旺. 抽吸对高超声速进气道起动能力的影响[J]. 推进技术,2006,27(6): 525-528. YUAN Huacheng,LIANG Dewang. Effect of suction on starting of hypersonic inlet[J]. Journal of Propulsion Technology,2006,27(6): 525-528. (in Chinese

    YUAN Huacheng, LIANG Dewang. Effect of suction on starting of hypersonic inlet[J]. Journal of Propulsion Technology, 2006, 27(6): 525-528. (in Chinese)
    [12] 王卫星,袁化成,黄国平,等. 抽吸位置对高超声速进气道起动性能的影响[J]. 航空动力学报,2009,24(4): 918-924. WANG Weixing,YUAN Huacheng,HUANG Guoping,et al. Impact of suction position on starting of hypersonic inlet[J]. Journal of Aerospace Power,2009,24(4): 918-924. (in Chinese

    WANG Weixing, YUAN Huacheng, HUANG Guoping, et al. Impact of suction position on starting of hypersonic inlet[J]. Journal of Aerospace Power, 2009, 24(4): 918-924. (in Chinese)
    [13] 温玉芬,张晨凯,张正,等. 基于多缝放气自适应流动控制的超声速进气道数值研究[J]. 航空动力学报,2021,36(10): 2017-2028. WEN Yufen,ZHANG Chenkai,ZHANG Zheng,et al. Numerical investigation on adaptive flow-control of supersonic inlet based on air-bleeding multi-slots[J]. Journal of Aerospace Power,2021,36(10): 2017-2028. (in Chinese

    WEN Yufen, ZHANG Chenkai, ZHANG Zheng, et al. Numerical investigation on adaptive flow-control of supersonic inlet based on air-bleeding multi-slots[J]. Journal of Aerospace Power, 2021, 36(10): 2017-2028. (in Chinese)
    [14] 翁小侪,郭荣伟. 一种二元定几何混压式超声速进气道流场控制概念研究[J]. 航空动力学报,2012,27(11): 2492-2498. WENG Xiaochai,GUO Rongwei. Study of novel flow control concept for fix-geometry two-dimensional mix-compression supersonic inlet[J]. Journal of Aerospace Power,2012,27(11): 2492-2498. (in Chinese

    WENG Xiaochai, GUO Rongwei. Study of novel flow control concept for fix-geometry two-dimensional mix-compression supersonic inlet[J]. Journal of Aerospace Power, 2012, 27(11): 2492-2498. (in Chinese)
    [15] ZHANG Qifan,TAN Huijun,BU Huanxian. Investigation of a movable slot-plate control method for hypersonic inlet unstart caused by downstream mass-flow choking: AIAA 2014-3847[R]. Reston,US: AIAA,2014.
    [16] 李世珍,唐硕. 高超声速进气道壁面开缝对边界层分离影响研究[J]. 空气动力学学报,2011,29(1): 68-72. LI Shizhen,TANG Shuo. Study on the effect of wall slotting on boundary layer separation in hypersonic inlet[J]. Acta Aerodynamica Sinica,2011,29(1): 68-72. (in Chinese

    LI Shizhen, TANG Shuo. Study on the effect of wall slotting on boundary layer separation in hypersonic inlet[J]. Acta Aerodynamica Sinica, 2011, 29(1): 68-72. (in Chinese)
    [17] HABERLE J,GULHAN A. Investigation of the performance of a scramjet inlet at Mach 6 with boundary layer bleed : AIAA2006-8139 [R]. Reston,US: AIAA,2006.
    [18] HAMED A,LEHNIG T. Effect of bleed configuration on shock/laminar boundary-layer interactions[J]. Journal of Propulsion and Power,1995,11(1): 42-48. doi: 10.2514/3.23838
    [19] 杜蕊. 火箭发动机变工况条件下冲压主燃区动态特性影响研究[D]. 北京: 北京理工大学,2019. DU Rui. Study on dynamic characteristics of ramjet combustor under the variable working conditions of rocket[D]. Beijing: Beijing Institute of Technology,2019. (in Chinese

    DU Rui. Study on dynamic characteristics of ramjet combustor under the variable working conditions of rocket[D]. Beijing: Beijing Institute of Technology, 2019. (in Chinese)
    [20] 冯钦. 固冲发动机进气道补燃室耦合分析[D]. 南京: 南京理工大学,2020. FENG Qin. Coupling analysis between inlet passage and secondary combustion chamber in the solid rocket ramjet[D]. Nanjing: Nanjing University of Science and Technology,2020. (in Chinese

    FENG Qin. Coupling analysis between inlet passage and secondary combustion chamber in the solid rocket ramjet[D]. Nanjing: Nanjing University of Science and Technology, 2020. (in Chinese)
    [21] 张浩,李光熙,李江,等. 内置中心支板的RBCC变几何二元进气道设计与数值模拟[J]. 固体火箭技术,2014,37(2): 184-191. ZHANG Hao,LI Guangxi,LI Jiang,et al. Design and numerical simulation of a two-dimensional RBCC variable-geometry inlet with a central strut[J]. Journal of Solid Rocket Technology,2014,37(2): 184-191. (in Chinese

    ZHANG Hao, LI Guangxi, LI Jiang, et al. Design and numerical simulation of a two-dimensional RBCC variable-geometry inlet with a central strut[J]. Journal of Solid Rocket Technology, 2014, 37(2): 184-191. (in Chinese)
    [22] REINARTZ B U,HERRMANN C D,BALLMANN J,et al. Aerodynamic performance analysis of a hypersonic inlet isolator using computation and experiment[J]. Journal of Propulsion and Power,2003,19(5): 868-875. doi: 10.2514/2.6177
    [23] 赵健. 超声速边界层抽吸孔隙流场结构研究[D]. 长沙: 国防科学技术大学,2016. ZHAO Jian. Research on flowfield structure in supersonic boundary layer bleed holes and slots[D]. Changsha: National University of Defense Technology,2016. (in Chinese

    ZHAO Jian. Research on flowfield structure in supersonic boundary layer bleed holes and slots[D]. Changsha: National University of Defense Technology, 2016. (in Chinese)
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  29
  • HTML浏览量:  18
  • PDF量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-14
  • 网络出版日期:  2024-01-22

目录

    /

    返回文章
    返回