Damage extent identification method of typical rolling bearing faults based on acoustic emission multi-parameter fusion
-
摘要:
针对滚动轴承典型故障损伤程度难识别的问题,以声发射参数分析和波形流分析方法为基础,结合时间到达特征指数(TAFI)、计数、撞击数、能量以及引入故障特征频率功率峰值与其相邻倍频间频带内平均功率比值的无量纲参数故障因子,提出了一种基于声发射多参数融合的滚动轴承典型故障损伤程度识别方法。为验证该方法对滚动轴承典型故障损伤程度的识别效果,搭建了滚动轴承典型故障模拟试验台,开展试验并采集了线切割严重损伤和点蚀微弱损伤两种缺陷的滚动轴承声发射信号,对相同转速工况下测得的典型故障轴承与健康轴承的声发射信号应用本文提出的方法进行识别。结果表明:声发射特征参数TAFI可以初步判定轴承是否存在故障,计数和撞击数可有效识别滚动轴承的故障类型;特征参数能量可有效识别外圈故障和滚动体故障滚动轴承的不同损伤程度,引入故障因子参量来表征不同缺陷滚动轴承的损伤程度,通过线切割和点蚀缺陷1~5倍频故障因子数值上的差异,有效识别了典型故障滚动轴承的不同损伤程度,弥补了特征参数能量对内圈故障损伤程度识别的不足。该方法可有效识别滚动轴承典型故障的不同损伤程度。
Abstract:In view of the problem in identifying the damage extent of typical rolling bearing faults, based on acoustic emission parameter analysis and waveform flow analysis methods, the time arrival feature index (TAFI), count, number of hits and energy were combined, and the non-dimensional parameter fault factor as the ratio of the peak power of the fault characteristic frequency to the average power in the frequency band between its adjacent octave was introduced. An identification method of the damage extent for typical rolling bearing faults based on acoustic emission multi-parameter fusion was proposed. In order to verify the identification effect of this method on the damage extent of typical rolling bearing faults, a test bench for simulating typical rolling bearing faults was built. Test was carried out and the acoustic emission signals of rolling bearing with two defects of serious damage caused by wire-cutting and weak damage caused by pitting caused were collected. The identification method proposed was applied to the acoustic emission signals of typical faulty bearings and healthy bearings measured under the same speed conditions. The results showed that the acoustic emission characteristic parameter TAFI can preliminarily determine whether the bearing was faulty, the count and number of hits can effectively identify the fault types of rolling bearings. The characteristic parameter energy can effectively identify different damage extents of the rolling bearing with outer ring fault and rolling element fault. The fault factor parameter was introduced to characterize the damage degree of rolling bearings with different defects, and the different damage extents of rolling bearing with typical faults were effectively identified through the numerical differences of the fault factors of 1−5 times fault characteristic frequency between wire-cutting and pitting defects, which made up for the lack of fault damage extent identification of inner ring fault with characteristic parameter energy. This method can effectively identify different damage extents of typical rolling bearing faults.
-
Key words:
- acoustic emission /
- multi-parameter fusion /
- rolling bearing /
- typical fault /
- damage extent /
- fault factor
-
表 1 试验轴承的几何参数
Table 1. Geometric parameters of the test bearing
参数 数值及说明 轴承型号 NJ204EM 节径/mm 33.5 接触角/(°) 0 滚动体个数 12 滚动体直径/mm 6 表 2 不同损伤状态典型故障轴承的声发射参数统计
Table 2. Acoustic emission parameter statistics of typical fault bearings under different damage states
损伤
状态故障
类型计数
平均值能量平均值/
(mV·µs)撞击
总数健康 无故障 2.10 0.42 20 线切割
缺陷内圈 71.30 2.27 234 滚动体 169.67 466.03 841 外圈 281.90 825.03 625 点蚀缺陷 内圈 15.58 0.97 53 滚动体 51.35 30.94 721 外圈 186.48 48.29 236 表 3 840 r/min转速下轴承线切割与点蚀损伤故障特征频率理论值
Table 3. Theoretical value of fault characteristic frequency of bearing linear cutting and pitting damage at 840 r/min speed
故障类型 故障特征频率理论值/Hz 外圈 ${f_{\text{o}}} = 60.91$ 滚动体 ${f_{\text{b}}} = 30.25$ 内圈 ${f_{\text{i}}} = 99.04$ 表 4 故障特征频率及倍频对应峰值和附近平均峰值
Table 4. Fault characteristic frequency and frequency doubling corresponding peak and nearby average peak
10−3 W 特征
频率变量值 外圈 滚动体 内圈 线切割故障 点蚀故障 线切割故障 点蚀故障 线切割故障 点蚀故障 1倍频 D2 4.22 1.78 59.7 1.65 0.0189 0.176 D 0.78 0.81 9.0 0.58 0.0070 0.120 2倍频 D2 3.71 1.24 62.7 1.66 0.0185 0.123 D 0.78 0.65 10.1 0.49 0.0069 0.079 3倍频 D2 2.38 1.18 47.3 1.20 0.0148 0.098 D 0.76 0.57 9.2 0.48 0.0055 0.069 4倍频 D2 2.78 1.03 43.3 1.23 0.0153 0.089 D 0.77 0.47 9.1 0.48 0.0056 0.059 5倍频 D2 2.29 0.72 28.4 0.0128 0.090 D 0.75 0.38 9.0 0.47 0.0053 0.063 表 5 不同损伤状态典型故障轴承的故障因子
Table 5. Fault factors of typical fault bearings under different damage states
故障类型 损伤状态 $ {\lambda _1} $ $ {\lambda _2} $ $ {\lambda _3} $ $ {\lambda _4} $ $ {\lambda _5} $ 外圈 线切割 5.38 4.75 3.13 3.63 3.05 点蚀 2.19 1.92 2.08 2.22 1.88 滚动体 线切割 6.67 6.21 5.16 4.74 3.16 点蚀 2.84 3.40 2.51 2.55 1.00 内圈 线切割 2.71 2.69 2.67 2.75 2.41 点蚀 1.46 1.56 1.43 1.50 1.43 -
[1] OH J W,PARK D,JEONG J. Fault detection for lubricant bearing with CNN[C]//Proceedings of 2nd International Conference on Intelligent Autonomous Systems. Piscataway,US: IEEE,2019: 142-145. [2] 郝如江,褚福磊,张新明. 基于小波变换的滚动轴承故障声发射信号提纯技术[J]. 振动与冲击,2006,25(增刊): 335-337. HAO Rujiang,CHU Fulei,ZHANG Xinming. Technology of acoustic emission signal purification for rolling bearing fault based on wavelet transform[J]. Journal of Vibration and Shock,2006,25(Suppl.): 335-337. (in ChineseHAO Rujiang, CHU Fulei, ZHANG Xinming. Technology of acoustic emission signal purification for rolling bearing fault based on wavelet transform[J]. Journal of Vibration and Shock, 2006, 25(Suppl.): 335-337. (in Chinese) [3] KHAKIPOUR M H,SAFAVI A A,SETOODEH P. Bearing fault diagnosis with morphological gradient wavelet[J]. Journal of the Franklin Institute,2017,354(6): 2465-2476. doi: 10.1016/j.jfranklin.2016.11.013 [4] VAN HECKE B,QU Yongzhi,HE D,et al. A new spectral average-based bearing fault diagnostic approach[J]. Journal of Failure Analysis and Prevention,2014,14(3): 354-362. [5] VAN HECKE B,YOON J,HE D. Low speed bearing fault diagnosis using acoustic emission sensors[J]. Applied Acoustics,2016,105: 35-44. doi: 10.1016/j.apacoust.2015.10.028 [6] HEMMATI F,ALQARADAWI M,GADALA M S. Rolling element bearing fault diagnostics using acoustic emission technique and advanced signal processing[J]. Proceedings of the Institution of Mechanical Engineers: Part J Journal of Engineering Tribology,2016,230(1): 64-77. doi: 10.1177/1350650115591233 [7] FEI Chengwei,CHOY Y S,BAI Guangchen,et al. Multi-feature entropy distance approach with vibration and acoustic emission signals for process feature recognition of rolling element bearing faults[J]. Structural Health Monitoring,2018,17(2): 156-168. doi: 10.1177/1475921716687167 [8] ELASHA F,GREAVES M,MBA D. Planetary bearing defect detection in a commercial helicopter main gearbox with vibration and acoustic emission[J]. Structural Health Monitoring,2018,17(5): 1192-1212. doi: 10.1177/1475921717738713 [9] YAN Ruqiang,GAO R X. Complexity as a measure for machine health evaluation[J]. IEEE Transactions on Instrumentation and Measurement,2004,53(4): 1327-1334. doi: 10.1109/TIM.2004.831169 [10] HONG H,LIANG Ming. Fault severity assessment for rolling element bearings using the Lempel-Ziv complexity and continuous wavelet transform[J]. Journal of Sound and Vibration,2009,320(1/2): 452-468. [11] ZHU Keheng,SONG Xigeng,XUE Dongxin. Incipient fault diagnosis of roller bearings using empirical mode decomposition and correlation coefficient[J]. Journal of Vibroengineering,2013,15(2): 597-603. [12] 栾孝驰,那万晓,沙云东,等. 基于特征量阈值判决的轴承故障诊断方法[J]. 推进技术,2022,43(4): 307-317. LUAN Xiaochi,NA Wanxiao,SHA Yundong,et al. Bearing fault diagnosis method based on eigenvalue threshold decision[J]. Journal of Propulsion Technology,2022,43(4): 307-317. (in ChineseLUAN Xiaochi, NA Wanxiao, SHA Yundong, et al. Bearing fault diagnosis method based on eigenvalue threshold decision[J]. Journal of Propulsion Technology, 2022, 43(4): 307-317. (in Chinese) [13] 栾孝驰,徐石,沙云东,等. 基于GWO-NLM与CEEMDAN的滚动轴承故障诊断方法[J]. 航空动力学报,2023,38(5): 1185-1197. LUAN Xiaochi,XU Shi,SHA Yundong,et al. Rolling bearing fault diagnosis method based on GWO-NLM and CEEMDAN[J]. Journal of Aerospace Power,2023,38(5): 1185-1197. (in ChineseLUAN Xiaochi, XU Shi, SHA Yundong, et al. Rolling bearing fault diagnosis method based on GWO-NLM and CEEMDAN[J]. Journal of Aerospace Power, 2023, 38(5): 1185-1197. (in Chinese) [14] 栾孝驰,沙云东,柳贡民,等. 基于WPD-KVI-Hilbert变换相结合的滚动轴承早期故障特征精准识别[J]. 推进技术,2022,43(2): 362-373. LUAN Xiaochi,SHA Yundong,LIU Gongmin,et al. Accurate identification for early fault features of rolling bearings based on WPD-KVI-Hilbert transform[J]. Journal of Propulsion Technology,2022,43(2): 362-373. (in ChineseLUAN Xiaochi, SHA Yundong, LIU Gongmin, et al. Accurate identification for early fault features of rolling bearings based on WPD-KVI-Hilbert transform[J]. Journal of Propulsion Technology, 2022, 43(2): 362-373. (in Chinese) [15] 王立炜,栾孝驰,沙云东,等. 基于快速ICA的复杂路径下滚棒轴承外圈划伤故障特征提取[J]. 机械设计与制造,2021(12): 77-81,87. WANG Liwei,LUAN Xiaochi,SHA Yundong,et al. Fault extraction of roller bearing outer ring scratch in complex path based on fast ICA[J]. Machinery Design and Manufacture,2021(12): 77-81,87. (in ChineseWANG Liwei, LUAN Xiaochi, SHA Yundong, et al. Fault extraction of roller bearing outer ring scratch in complex path based on fast ICA[J]. Machinery Design and Manufacture, 2021(12): 77-81, 87. (in Chinese) [16] 栾孝驰,沙云东. 降速工况下滚动轴承微弱故障特征信号提取新方法[J]. 机械设计与制造,2020(3): 207-210. LUAN Xiaochi,SHA Yundong. A new method of rolling bearing weak fault characteristic signal extraction under lowing speed condition[J]. Machinery Design and Manufacture,2020(3): 207-210. (in ChineseLUAN Xiaochi, SHA Yundong. A new method of rolling bearing weak fault characteristic signal extraction under lowing speed condition[J]. Machinery Design and Manufacture, 2020(3): 207-210. (in Chinese) [17] 韩磊,洪杰,王冬. 基于小波包分析的航空发动机轴承故障诊断[J]. 推进技术,2009,30(3): 328-331,341. HAN Lei,HONG Jie,WANG Dong. Fault diagnosis of aero-engine bearings based on wavelet package analysis[J]. Journal of Propulsion Technology,2009,30(3): 328-331,341. (in ChineseHAN Lei, HONG Jie, WANG Dong. Fault diagnosis of aero-engine bearings based on wavelet package analysis[J]. Journal of Propulsion Technology, 2009, 30(3): 328-331, 341. (in Chinese) [18] 边杰. 基于遗传算法参数优化的变分模态分解结合1.5维谱的轴承故障诊断[J]. 推进技术,2017,38(7): 1618-1624. BIAN Jie. Fault diagnosis of bearing combining parameter optimized variational mode decomposition based on genetic algorithm with 1.5-dimensional spectrum[J]. Journal of Propulsion Technology,2017,38(7): 1618-1624. (in ChineseBIAN Jie. Fault diagnosis of bearing combining parameter optimized variational mode decomposition based on genetic algorithm with 1.5-dimensional spectrum[J]. Journal of Propulsion Technology, 2017, 38(7): 1618-1624. (in Chinese) [19] 张晓涛,唐力伟,王平,等. 轴承故障声发射信号多频带共振解调方法[J]. 振动、测试与诊断,2015,35(2): 363-368,404. ZHANG Xiaotao,TANG Liwei,WANG Ping,et al. Multi-band resonance demodulation of rolling bearing fault acoustic emission signal[J]. Journal of Vibration,Measurement and Diagnosis,2015,35(2): 363-368,404. (in ChineseZHANG Xiaotao, TANG Liwei, WANG Ping, et al. Multi-band resonance demodulation of rolling bearing fault acoustic emission signal[J]. Journal of Vibration, Measurement and Diagnosis, 2015, 35(2): 363-368, 404. (in Chinese) [20] 张晗,郭桃都,韩大禹,等. 某型号航空发动机轴承故障问题研究[J]. 中国新技术新产品,2017(12): 39-40. ZHANG Han,GUO Taodu,HAN Dayu,et al. Research on bearing failure of an aero-engine[J]. New Technology and New Products of China,2017(12): 39-40. (in ChineseZHANG Han, GUO Taodu, HAN Dayu, et al. Research on bearing failure of an aero-engine[J]. New Technology and New Products of China, 2017(12): 39-40. (in Chinese) [21] 戴洪德,陈强强,戴邵武,等. 基于平滑先验分析和排列熵的滚动轴承故障诊断[J]. 推进技术,2020,41(8): 1841-1849. DAI Hongde,CHEN Qiangqiang,DAI Shaowu,et al. Rolling bearing fault diagnosis based on smoothness priors approach and permutation entropy[J]. Journal of Propulsion Technology,2020,41(8): 1841-1849. (in ChineseDAI Hongde, CHEN Qiangqiang, DAI Shaowu, et al. Rolling bearing fault diagnosis based on smoothness priors approach and permutation entropy[J]. Journal of Propulsion Technology, 2020, 41(8): 1841-1849. (in Chinese) [22] 董广明,陈进. 基于循环频率能量的滚动轴承损伤程度识别[J]. 振动工程学报,2010,23(3): 249-253. DONG Guangming,CHEN Jin. Damage extent identification of rolling element bearings based on cyclic energy indicator[J]. Journal of Vibration Engineering,2010,23(3): 249-253. (in ChineseDONG Guangming, CHEN Jin. Damage extent identification of rolling element bearings based on cyclic energy indicator[J]. Journal of Vibration Engineering, 2010, 23(3): 249-253. (in Chinese) [23] 夏平,徐华,马再超,等. 采用改进HVD与Lempel-Ziv复杂性测度的滚动轴承早期损伤程度评估方法[J]. 西安交通大学学报,2017,51(6): 8-13. XIA Ping,XU Hua,MA Zaichao,et al. Assessment method of early damage severity for rolling bearing based on the improved HVD and Lempel-Ziv index[J]. Journal of Xi’an Jiaotong University,2017,51(6): 8-13. (in ChineseXIA Ping, XU Hua, MA Zaichao, et al. Assessment method of early damage severity for rolling bearing based on the improved HVD and Lempel-Ziv index[J]. Journal of Xi’an Jiaotong University, 2017, 51(6): 8-13. (in Chinese) [24] 张雨琦,邹金慧,马军. CEEMD与Lempel-Ziv复杂度相结合的滚动轴承损伤程度评估方法[J]. 机械科学与技术,2018,37(9): 1408-1414. ZHANG Yuqi,ZOU Jinhui,MA Jun. Damage assessment method for rolling bearings combined CEEMD with Lempel-Ziv complexity[J]. Mechanical Science and Technology for Aerospace Engineering,2018,37(9): 1408-1414. (in ChineseZHANG Yuqi, ZOU Jinhui, MA Jun. Damage assessment method for rolling bearings combined CEEMD with Lempel-Ziv complexity[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(9): 1408-1414. (in Chinese) -