Numerical study on powder fluidization and conveying characteristics of powder supply device with built-in intake under high-pressure
-
摘要:
针对粉末发动机中活塞驱动式燃料供给系统,设计了一种内置进气式供粉装置。基于欧拉-欧拉双流体模型,通过用户自定义函数实现活塞运动,建立了气体-粉末-活塞相互作用计算模型,开展了不同储箱内初始工作压力(0.6、1.2、1.8、2.4、3.0、3.6 MPa)对粉末燃料供给特性的数值研究。结果表明:不同初始工作压力下的气固分界面主要在进气口附近波动。随初始工作压力增大,粉末流量波动幅度降低,稳定输送阶段内的平均粉末流量更接近理论值,粉末层(粉末体积分数为0.1)面积波动幅度降低;在两相喷管喉道截面,固相平均体积分数随初始工作压力增大而增大,但拟颗粒温度的波动幅度随之减小。初始工作压力为3.6 MPa时的储箱内压力相比0.6 MPa能维持更长时间稳定,压力波动幅度降低了59.1%。
Abstract:A powder feeding device with a built-in intake channel was designed for the piston-driven powder fuel supply system in powder engines, the piston movement was realized by using the User Defined Function (UDF), and the action of the coupling of the gas-powder-piston was established. Numerical simulation was carried out to investigate the powder fuel supply characteristics under different initial operating pressures (0.6, 1.2, 1.8, 2.4, 3.0 and 3.6 MPa) in the powder storage tank based on the Eulerian-Eulerian two-fluid model. The results showed that the gas-solid interface mainly fluctuated around the intake under different initial operating pressures. With the increase of the initial operating pressure, the fluctuation amplitude of the powder flow rate decreased, the mean powder flow rate within the stable conveying stage was closer to the theoretical value, and the fluctuation amplitude of the powder layer (powder volume fraction of 0.1) area decreased; the area-averaged volume fraction of solid phase at the two-phase nozzle throat section increased with the increase of the initial operating pressure in the storage tank, but the fluctuation amplitude of the granular temperature decreased. The pressure in the storage tank at an initial operating pressure of 3.6 MPa was kept stable for a longer period compared with 0.6 MPa, and the pressure fluctuation in the storage tank was reduced by 59.1%.
-
Cd 阻力系数 ds 固相直径,mm e 粒子碰撞的恢复系数 g 重力加速度,m/s2 g0 径向分布函数 I 应力张量 I2D 偏应力张量的第二不变量 p 压力,N/m2 ps 固相压力,N/m2 Rg 气体常数,J/(mol·K) T 温度,K t 时间,s ug 气相速度,m/s us 固相速度,m/s Res 固相雷诺数 β 气相/固相动量交换系数,kg/(m3·s) $\gamma^{\varTheta}_{\mathrm{s}} $ 碰撞能量耗散,kg/(m3·s) $\varepsilon_{\mathrm{g}} $ 气相体积分数,% $\varepsilon_{\mathrm{s}} $ 固相体积分,% $\varepsilon_{\mathrm{s,max}} $ 固相最大打包极限,% $\varTheta_{\mathrm{s}} $ 拟颗粒温度,m2/s2 λg 气体体积黏度,Pa·s λs 固体体积黏度,Pa·s μg 气相剪切黏度,Pa·s μs 固相有效黏度,Pa·s μs,col 粉末碰撞黏度,Pa·s μs,fr 粉末摩擦黏度,Pa·s μs,kin 粉末动力黏度,Pa·s ρg 气相密度,kg/m3 ρs 固相密度,kg/m3 τg 气相应力应变张量,N/m2 τs 固相应力应变张量,N/m2 $\varPhi $ 内摩擦角,(°) 下标 g 气相 s 固相 表 1 计算工况
Table 1. Simulation cases
工况 活塞速度/
(mm/s)进气流量$ {\dot{m}}_{\mathrm{i}} $/
(g/s)初始工作压力/
MPa1 70 1(0.33%$ {\dot m_{{\text{pt}}}} $) 0.6 2 1.2 3 1.8 4 2.4 5 3.0 6 3.6 表 2 计算条件参数
Table 2. Simulation condition parameters
参数 数值 颗粒粒径ds/mm 0.02 初始粉末装填率ε 0.55 最大粉末装填率εmax 0.63 重力加速度g/(m/s2) 9.81 颗粒黏度μg/10−5 (Pa·s) 1.72 颗粒密度ρs/(kg/m3) 2719 虚拟质量系数 0.5 恢复系数e 0.9 -
[1] 董新刚,霍东兴,张强,等. 粉末发动机技术研究现状及展望[J]. 固体火箭技术,2021,44(2): 166-178. DONG Xingang,HUO Dongxing,ZHANG Qiang,et al. Research progresses and prospect of powdered fuel engine technology[J]. Journal of Solid Rocket Technology,2021,44(2): 166-178. (in ChineseDONG Xingang, HUO Dongxing, ZHANG Qiang, et al. Research progresses and prospect of powdered fuel engine technology[J]. Journal of Solid Rocket Technology, 2021, 44(2): 166-178. (in Chinese) [2] LOFTUS H,MONTANINO L,BRYNDLE R. Powder rocket feasibility evaluation: AIAA1972-1162 [R]. Reston,US: AIAA,1972. [3] LOFTUS H J,MARSHALL D,MONTANINO L N. Powder rocket feasibility evaluation[C]//Proceedings of the 8th Joint Propulsion Specialist Conference. Buffalo,New York,1972,1162. [4] LI Chao,HU Chunbo,ZHU Xiaofei,et al. Experimental study on the thrust modulation performance of powdered magnesium and CO2 bipropellant engine[J]. Acta Astronautica,2018,147: 403-411. doi: 10.1016/j.actaastro.2018.03.029 [5] WEI Ronggang,HU Chunbo,YANG Jiangang,et al. Pressure-drop characteristics of CO2 boiling flow in the regenerative-cooling channel of an Mg/CO2 powder rocket engine for Mars missions[J]. Acta Astronautica,2022,199: 153-160. doi: 10.1016/j.actaastro.2022.05.031 [6] MEYER M L. Powdered aluminum and oxygen rocket propellants subscale combustion experiments: NASA-TM-106439[R]. Monterey,US: NASA,1993. [7] 沈勇军. 铝粉燃料水冲压发动机内流场数值模拟[D]. 哈尔滨: 哈尔滨工程大学,2016. SHEN Yongjun. Numerical simulation of internal flow field in aluminium fuel/water ramjet engines[D]. Harbin: Harbin Engineering University,2016. (in ChineseSHEN Yongjun. Numerical simulation of internal flow field in aluminium fuel/water ramjet engines[D]. Harbin: Harbin Engineering University, 2016. (in Chinese) [8] 李慧强,徐旭,朱清波,等. 以粉末燃料冲压发动机为动力的火星巡航飞行器方案初步研究[J]. 载人航天,2021,27(3): 334-338. LI Huiqiang,XU Xu,ZHU Qingbo,et al. Study on preliminary scheme of Mars cruise vehicle powered by powder fuel ramjet[J]. Manned Spaceflight,2021,27(3): 334-338. (in Chinese doi: 10.3969/j.issn.1674-5825.2021.03.010LI Huiqiang, XU Xu, ZHU Qingbo, et al. Study on preliminary scheme of Mars cruise vehicle powered by powder fuel ramjet[J]. Manned Spaceflight, 2021, 27(3): 334-338. (in Chinese) doi: 10.3969/j.issn.1674-5825.2021.03.010 [9] 任蒙飞,席文雄,罗世彬,等. 粉末燃料冲压发动机头部组织掺混流动数值模拟[J]. 火箭推进,2020,46(5): 35-41. REN Mengfei,XI Wenxiong,LUO Shibin,et al. Numerical simulation of mixing flow in the head of powder fuel ramjet[J]. Journal of Rocket Propulsion,2020,46(5): 35-41. (in Chinese doi: 10.3969/j.issn.1672-9374.2020.05.005REN Mengfei, XI Wenxiong, LUO Shibin, et al. Numerical simulation of mixing flow in the head of powder fuel ramjet[J]. Journal of Rocket Propulsion, 2020, 46(5): 35-41. (in Chinese) doi: 10.3969/j.issn.1672-9374.2020.05.005 [10] SUN Haijun,HU Chunbo,ZHANG Tian,et al. Experimental investigation on mass flow rate measurements and feeding characteristics of powder at high pressure[J]. Applied Thermal Engineering,2016,102: 30-37. doi: 10.1016/j.applthermaleng.2016.03.142 [11] FRICK H D,BURR J W,SOBIENIAK M G. Fluidized powders-a new approach to storable missile fuels[C]// Proceedings of 12th JANNAF Liquid Propulsion Meeting. Denver,US: JANNAF,1970: 393. [12] WATERS D F,CADOU C P,EAGLE W E. Quantifying unmanned undersea vehicle range improvement enabled by aluminum-water power system[J]. Journal of Propulsion and Power,2013,29(3): 675-685. doi: 10.2514/1.B34701 [13] 张胜敏,杨玉新,胡春波. 粉末火箭发动机推力调节试验研究[J]. 固体火箭技术,2015,38(3): 347-350. ZHANG Shengmin,YANG Yuxin,HU Chunbo. Experimental investigation on thrust regulation of powdered rocket motor[J]. Journal of Solid Rocket Technology,2015,38(3): 347-350. (in ChineseZHANG Shengmin, YANG Yuxin, HU Chunbo. Experimental investigation on thrust regulation of powdered rocket motor[J]. Journal of Solid Rocket Technology, 2015, 38(3): 347-350. (in Chinese) [14] BAKER T M,MILLER T F. Ultraviolet radiation from combustion of a dense magnesium powder flow in air[J]. Journal of Thermophysics and Heat Transfer,2013,27(1): 22-29. doi: 10.2514/1.T3873 [15] SONG Jialong,LIU Daoyin,MA Jiliang,et al. Effect of elevated pressure on bubble properties in a two-dimensional gas-solid fluidized bed[J]. Chemical Engineering Research and Design,2018,138: 21-31. doi: 10.1016/j.cherd.2018.08.012 [16] PIEPERS H W,COTTAAR E J E,VERKOOIJEN A H M,et al. Effects of pressure and type of gas on particle-particle interaction and the consequences for gas-solid fluidization behavior[J]. Powder Technology,1984,37(1): 55-70. doi: 10.1016/0032-5910(84)80006-6 [17] CAO Jiantao,CHENG Zhonghu,FANG Yitian,et al. Simulation and experimental studies on fluidization properties in a pressurized jetting fluidized bed[J]. Powder Technology,2008,183(1): 127-132. doi: 10.1016/j.powtec.2007.11.033 [18] 孙海俊,胡春波,徐义华. 粉末推进剂流化过程及高压流化机制分析[J]. 推进技术,2018,39(12): 2853-2862. SUN Haijun,HU Chunbo,XU Yihua. Analysis on fluidization process and mechanism of powder propellant at high pressure[J]. Journal of Propulsion Technology,2018,39(12): 2853-2862. (in ChineseSUN Haijun, HU Chunbo, XU Yihua. Analysis on fluidization process and mechanism of powder propellant at high pressure[J]. Journal of Propulsion Technology, 2018, 39(12): 2853-2862. (in Chinese) [19] SUN Haijun,HU Chunbo,ZHU Xiaofei. Numerical simulation on the powder propellant pickup characteristics of feeding system at high pressure[J]. Acta Astronautica,2017,139: 85-97. doi: 10.1016/j.actaastro.2017.06.030 [20] REN Guanlong,SUN Haijun,XU Yihua,et al. Effect of elevated pressure on gas-solid flow properties in a powder feeding system[J]. Polish Journal of Chemical Technology,2022,24(3): 41-52. doi: 10.2478/pjct-2022-0021 [21] LAN Xingying,XU Chunming,GAO Jinsen,et al. Influence of solid-phase wall boundary condition on CFD simulation of spouted beds[J]. Chemical Engineering Science,2012,69(1): 419-430. doi: 10.1016/j.ces.2011.10.064 [22] AMIRI Z,MOVAHEDIRAD S,SHIRVANI M,et al. The role of bubble injection characteristics at incipient fluidization condition on the mixing of particles in a gas-solid fluidized bed at high operating pressures: a CFD-DPM approach[J]. Powder Technology,2017,305: 739-747. doi: 10.1016/j.powtec.2016.10.055 [23] JIANG Xiaofeng,ZHONG Wenqi,LIU Xuejiao,et al. Study on gas-solid flow behaviors in a spouted bed at elevated pressure: numerical simulation aspect[J]. Powder Technology,2014,264: 22-30. doi: 10.1016/j.powtec.2014.05.015 [24] 任冠龙,孙海俊,徐义华,等. 动壁作用下流化气量对粉末供给特性的影响研究[J]. 航空兵器,2022,29(3): 73-81. REN Guanlong,SUN Haijun,XU Yihua,et al. Effects of gas flow rate on powder supplying characteristics under the action of moving wall[J]. Aero Weaponry,2022,29(3): 73-81. (in Chinese doi: 10.12132/ISSN.1673-5048.2021.0194REN Guanlong, SUN Haijun, XU Yihua, et al. Effects of gas flow rate on powder supplying characteristics under the action of moving wall[J]. Aero Weaponry, 2022, 29(3): 73-81. (in Chinese) doi: 10.12132/ISSN.1673-5048.2021.0194 [25] LI Chao,ZHU Xiaofei,DENG Zhe,et al. Powder feeding in a powder engine under different gas-solid ratios[J]. Acta Astronautica,2021,189: 712-721. doi: 10.1016/j.actaastro.2021.08.022 [26] LI Chao,HU Chunbo,XIN Xin,et al. Experimental study on the operation characteristics of aluminum powder fueled ramjet[J]. Acta Astronautica,2016,129: 74-81. doi: 10.1016/j.actaastro.2016.08.032 [27] YANG Jiangang,HU Chunbo,QIANG Wei,et al. Experimental investigation on the starting and flow regulation characteristics of powder supply system for powder engines[J]. Acta Astronautica,2021,180: 73-84. doi: 10.1016/j.actaastro.2020.12.004 [28] LI Yue,HU Chunbo,ZHU Xiaofei,et al. Experimental study on combustion characteristics of powder magnesium and carbon dioxide in rocket engine[J]. Acta Astronautica,2019,155: 334-349. doi: 10.1016/j.actaastro.2018.11.006 [29] TANG Jie,LU Haifeng,GUO Xiaolei,et al. Discharge characteristics of non-gravity-driven powder in horizontal silos[J]. Powder Technology,2022,400: 117234. doi: 10.1016/j.powtec.2022.117234 [30] GALLAGHER C,JALALIFAR S,SALEHI F,et al. A two-fluid model for powder fluidisation in turbulent channel flows[J]. Powder Technology,2021,389: 163-177. doi: 10.1016/j.powtec.2021.05.019 [31] 金贺龙,蒋淑园,王浩,等. 基于气固两相双流体模型研究火箭发动机斜切喷管流场特性[J]. 航空动力学报,2020,35(4): 867-877. JIN Helong,JIANG Shuyuan,WANG Hao,et al. Flow field characteristics of angle-cut nozzle of solid rocket motor based on gas-solid two phase flow model[J]. Journal of Aerospace Power,2020,35(4): 867-877. (in ChineseJIN Helong, JIANG Shuyuan, WANG Hao, et al. Flow field characteristics of angle-cut nozzle of solid rocket motor based on gas-solid two phase flow model[J]. Journal of Aerospace Power, 2020, 35(4): 867-877. (in Chinese) [32] VERMA V,DEEN N G,PADDING J T,et al. Two-fluid modeling of three-dimensional cylindrical gas-solid fluidized beds using the kinetic theory of granular flow[J]. Chemical Engineering Science,2013,102: 227-245. doi: 10.1016/j.ces.2013.08.002 [33] HERNÁNDEZ-JIMÉNEZ F,GARCIA-GUTIERREZ L M,ACOSTA-IBORRA A,et al. Numerical study of the effect of pressure and temperature on the fluidization of solids with air and (supercritical) CO2[J]. The Journal of Supercritical Fluids,2019,147: 271-283. doi: 10.1016/j.supflu.2018.11.008 [34] LI Jie,KUIPERS J A M. Effect of pressure on gas-solid flow behavior in dense gas-fluidized beds: a discrete particle simulation study[J]. Powder Technology,2002,127(2): 173-184. doi: 10.1016/S0032-5910(02)00116-X