留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内置进气式粉末供给装置高压流化输送特性的数值分析

任冠龙 孙海俊 徐义华 胡晓安 李超

任冠龙, 孙海俊, 徐义华, 等. 内置进气式粉末供给装置高压流化输送特性的数值分析[J]. 航空动力学报, 2024, 39(8):20220595 doi: 10.13224/j.cnki.jasp.20220595
引用本文: 任冠龙, 孙海俊, 徐义华, 等. 内置进气式粉末供给装置高压流化输送特性的数值分析[J]. 航空动力学报, 2024, 39(8):20220595 doi: 10.13224/j.cnki.jasp.20220595
REN Guanlong, SUN Haijun, XU Yihua, et al. Numerical study on powder fluidization and conveying characteristics of powder supply device with built-in intake under high-pressure[J]. Journal of Aerospace Power, 2024, 39(8):20220595 doi: 10.13224/j.cnki.jasp.20220595
Citation: REN Guanlong, SUN Haijun, XU Yihua, et al. Numerical study on powder fluidization and conveying characteristics of powder supply device with built-in intake under high-pressure[J]. Journal of Aerospace Power, 2024, 39(8):20220595 doi: 10.13224/j.cnki.jasp.20220595

内置进气式粉末供给装置高压流化输送特性的数值分析

doi: 10.13224/j.cnki.jasp.20220595
基金项目: 国家自然科学基金(12102161); 航空科学基金(20200001056001)
详细信息
    作者简介:

    任冠龙(1999-),男,硕士,主要从事粉末发动机燃料输送方面的研究。E-mail:rglrenguanlong@163.com

    通讯作者:

    孙海俊(1987-),男,副教授,博士,主要从事粉末燃料发动机方面的研究。E-mail:sunhaij1987@163.com

  • 中图分类号: V435

Numerical study on powder fluidization and conveying characteristics of powder supply device with built-in intake under high-pressure

  • 摘要:

    针对粉末发动机中活塞驱动式燃料供给系统,设计了一种内置进气式供粉装置。基于欧拉-欧拉双流体模型,通过用户自定义函数实现活塞运动,建立了气体-粉末-活塞相互作用计算模型,开展了不同储箱内初始工作压力(0.6、1.2、1.8、2.4、3.0、3.6 MPa)对粉末燃料供给特性的数值研究。结果表明:不同初始工作压力下的气固分界面主要在进气口附近波动。随初始工作压力增大,粉末流量波动幅度降低,稳定输送阶段内的平均粉末流量更接近理论值,粉末层(粉末体积分数为0.1)面积波动幅度降低;在两相喷管喉道截面,固相平均体积分数随初始工作压力增大而增大,但拟颗粒温度的波动幅度随之减小。初始工作压力为3.6 MPa时的储箱内压力相比0.6 MPa能维持更长时间稳定,压力波动幅度降低了59.1%。

     

  • 图 1  粉末储箱的几何结构(单位:mm)

    Figure 1.  Geometric configuration of powder storage tank (unit:mm)

    图 2  粉末储箱的结构化六面体网格

    Figure 2.  Structured hexahedral mesh of powder storage tank

    图 3  网格无关性验证

    Figure 3.  Grid independency test

    图 4  数值计算模型验证

    Figure 4.  Simulation calculation model verification

    图 5  瞬时粉末分布的数值计算与实验结果对比

    Figure 5.  Comparison between numerical simulations and experimental results of instantaneous powder distribution

    图 6  出口粉末流量随时间的变化规律

    Figure 6.  Variation law of outlet powder flow rate with time

    图 7  出口平均粉末流量与理论值对比

    Figure 7.  Comparison of the mean outlet powder flow rate with the theoretical value

    图 8  出口粉末流量均方差对比

    Figure 8.  Comparison of the standard deviation of the outlet powder flow rate

    图 9  中心截面(Z = 0 m)处瞬时气固流型分布

    Figure 9.  Instantaneous gas-solid flow pattern distribution at the central section (Z = 0 m)

    图 10  粉末层(εp=0.1)的空间分布

    Figure 10.  Spatial distribution of powder layer (εp=0.1)

    图 11  粉末层面积随时间变化分布

    Figure 11.  Variable distribution of powder layer area with time

    图 12  粉末层面积的均方差分布

    Figure 12.  Standard deviation distribution of the powder layer area

    图 13  粉末体积分数变化和粉末云图分布

    Figure 13.  Area-averaged powder volume fraction variation and powder contour distribution

    图 14  不同轴向位置处的面平均拟颗粒温度分布

    Figure 14.  Area-averaged granular temperature distribution at different axial positions

    图 15  不同轴向位置处的拟颗粒温度均方差对比

    Figure 15.  Comparison of the standard deviation of the granular temperature at different axial positions

    图 16  不同工况粉末储箱内压力随时间的变化规律

    Figure 16.  Variation law of pressure in the tank with time under different cases

    图 17  不同工况粉末储箱内压力均方差对比

    Figure 17.  Comparison of the standard deviation of the pressure in the powder storage tank under different cases

    Cd 阻力系数 ds 固相直径,mm
    e 粒子碰撞的恢复系数 g 重力加速度,m/s2
    g0 径向分布函数 I 应力张量
    I2D 偏应力张量的第二不变量 p 压力,N/m2
    ps 固相压力,N/m2 Rg 气体常数,J/(mol·K)
    T 温度,K t 时间,s
    ug 气相速度,m/s us 固相速度,m/s
    Res 固相雷诺数 β 气相/固相动量交换系数,kg/(m3·s)
    $\gamma^{\varTheta}_{\mathrm{s}} $ 碰撞能量耗散,kg/(m3·s) $\varepsilon_{\mathrm{g}} $ 气相体积分数,%
    $\varepsilon_{\mathrm{s}} $ 固相体积分,% $\varepsilon_{\mathrm{s,max}} $ 固相最大打包极限,%
    $\varTheta_{\mathrm{s}} $ 拟颗粒温度,m2/s2 λg 气体体积黏度,Pa·s
    λs 固体体积黏度,Pa·s μg 气相剪切黏度,Pa·s
    μs 固相有效黏度,Pa·s μs,col 粉末碰撞黏度,Pa·s
    μs,fr 粉末摩擦黏度,Pa·s μs,kin 粉末动力黏度,Pa·s
    ρg 气相密度,kg/m3 ρs 固相密度,kg/m3
    τg 气相应力应变张量,N/m2 τs 固相应力应变张量,N/m2
    $\varPhi $ 内摩擦角,(°)
    下标
    g 气相 s 固相
    下载: 导出CSV

    表  1  计算工况

    Table  1.   Simulation cases

    工况 活塞速度/
    (mm/s)
    进气流量$ {\dot{m}}_{\mathrm{i}} $/
    (g/s)
    初始工作压力/
    MPa
    1 70 1(0.33%$ {\dot m_{{\text{pt}}}} $) 0.6
    2 1.2
    3 1.8
    4 2.4
    5 3.0
    6 3.6
    下载: 导出CSV

    表  2  计算条件参数

    Table  2.   Simulation condition parameters

    参数 数值
    颗粒粒径ds/mm 0.02
    初始粉末装填率ε 0.55
    最大粉末装填率εmax 0.63
    重力加速度g/(m/s2 9.81
    颗粒黏度μg/10−5 (Pa·s) 1.72
    颗粒密度ρs/(kg/m3 2719
    虚拟质量系数 0.5
    恢复系数e 0.9
    下载: 导出CSV
  • [1] 董新刚,霍东兴,张强,等. 粉末发动机技术研究现状及展望[J]. 固体火箭技术,2021,44(2): 166-178. DONG Xingang,HUO Dongxing,ZHANG Qiang,et al. Research progresses and prospect of powdered fuel engine technology[J]. Journal of Solid Rocket Technology,2021,44(2): 166-178. (in Chinese

    DONG Xingang, HUO Dongxing, ZHANG Qiang, et al. Research progresses and prospect of powdered fuel engine technology[J]. Journal of Solid Rocket Technology, 2021, 44(2): 166-178. (in Chinese)
    [2] LOFTUS H,MONTANINO L,BRYNDLE R. Powder rocket feasibility evaluation: AIAA1972-1162 [R]. Reston,US: AIAA,1972.
    [3] LOFTUS H J,MARSHALL D,MONTANINO L N. Powder rocket feasibility evaluation[C]//Proceedings of the 8th Joint Propulsion Specialist Conference. Buffalo,New York,1972,1162.
    [4] LI Chao,HU Chunbo,ZHU Xiaofei,et al. Experimental study on the thrust modulation performance of powdered magnesium and CO2 bipropellant engine[J]. Acta Astronautica,2018,147: 403-411. doi: 10.1016/j.actaastro.2018.03.029
    [5] WEI Ronggang,HU Chunbo,YANG Jiangang,et al. Pressure-drop characteristics of CO2 boiling flow in the regenerative-cooling channel of an Mg/CO2 powder rocket engine for Mars missions[J]. Acta Astronautica,2022,199: 153-160. doi: 10.1016/j.actaastro.2022.05.031
    [6] MEYER M L. Powdered aluminum and oxygen rocket propellants subscale combustion experiments: NASA-TM-106439[R]. Monterey,US: NASA,1993.
    [7] 沈勇军. 铝粉燃料水冲压发动机内流场数值模拟[D]. 哈尔滨: 哈尔滨工程大学,2016. SHEN Yongjun. Numerical simulation of internal flow field in aluminium fuel/water ramjet engines[D]. Harbin: Harbin Engineering University,2016. (in Chinese

    SHEN Yongjun. Numerical simulation of internal flow field in aluminium fuel/water ramjet engines[D]. Harbin: Harbin Engineering University, 2016. (in Chinese)
    [8] 李慧强,徐旭,朱清波,等. 以粉末燃料冲压发动机为动力的火星巡航飞行器方案初步研究[J]. 载人航天,2021,27(3): 334-338. LI Huiqiang,XU Xu,ZHU Qingbo,et al. Study on preliminary scheme of Mars cruise vehicle powered by powder fuel ramjet[J]. Manned Spaceflight,2021,27(3): 334-338. (in Chinese doi: 10.3969/j.issn.1674-5825.2021.03.010

    LI Huiqiang, XU Xu, ZHU Qingbo, et al. Study on preliminary scheme of Mars cruise vehicle powered by powder fuel ramjet[J]. Manned Spaceflight, 2021, 27(3): 334-338. (in Chinese) doi: 10.3969/j.issn.1674-5825.2021.03.010
    [9] 任蒙飞,席文雄,罗世彬,等. 粉末燃料冲压发动机头部组织掺混流动数值模拟[J]. 火箭推进,2020,46(5): 35-41. REN Mengfei,XI Wenxiong,LUO Shibin,et al. Numerical simulation of mixing flow in the head of powder fuel ramjet[J]. Journal of Rocket Propulsion,2020,46(5): 35-41. (in Chinese doi: 10.3969/j.issn.1672-9374.2020.05.005

    REN Mengfei, XI Wenxiong, LUO Shibin, et al. Numerical simulation of mixing flow in the head of powder fuel ramjet[J]. Journal of Rocket Propulsion, 2020, 46(5): 35-41. (in Chinese) doi: 10.3969/j.issn.1672-9374.2020.05.005
    [10] SUN Haijun,HU Chunbo,ZHANG Tian,et al. Experimental investigation on mass flow rate measurements and feeding characteristics of powder at high pressure[J]. Applied Thermal Engineering,2016,102: 30-37. doi: 10.1016/j.applthermaleng.2016.03.142
    [11] FRICK H D,BURR J W,SOBIENIAK M G. Fluidized powders-a new approach to storable missile fuels[C]// Proceedings of 12th JANNAF Liquid Propulsion Meeting. Denver,US: JANNAF,1970: 393.
    [12] WATERS D F,CADOU C P,EAGLE W E. Quantifying unmanned undersea vehicle range improvement enabled by aluminum-water power system[J]. Journal of Propulsion and Power,2013,29(3): 675-685. doi: 10.2514/1.B34701
    [13] 张胜敏,杨玉新,胡春波. 粉末火箭发动机推力调节试验研究[J]. 固体火箭技术,2015,38(3): 347-350. ZHANG Shengmin,YANG Yuxin,HU Chunbo. Experimental investigation on thrust regulation of powdered rocket motor[J]. Journal of Solid Rocket Technology,2015,38(3): 347-350. (in Chinese

    ZHANG Shengmin, YANG Yuxin, HU Chunbo. Experimental investigation on thrust regulation of powdered rocket motor[J]. Journal of Solid Rocket Technology, 2015, 38(3): 347-350. (in Chinese)
    [14] BAKER T M,MILLER T F. Ultraviolet radiation from combustion of a dense magnesium powder flow in air[J]. Journal of Thermophysics and Heat Transfer,2013,27(1): 22-29. doi: 10.2514/1.T3873
    [15] SONG Jialong,LIU Daoyin,MA Jiliang,et al. Effect of elevated pressure on bubble properties in a two-dimensional gas-solid fluidized bed[J]. Chemical Engineering Research and Design,2018,138: 21-31. doi: 10.1016/j.cherd.2018.08.012
    [16] PIEPERS H W,COTTAAR E J E,VERKOOIJEN A H M,et al. Effects of pressure and type of gas on particle-particle interaction and the consequences for gas-solid fluidization behavior[J]. Powder Technology,1984,37(1): 55-70. doi: 10.1016/0032-5910(84)80006-6
    [17] CAO Jiantao,CHENG Zhonghu,FANG Yitian,et al. Simulation and experimental studies on fluidization properties in a pressurized jetting fluidized bed[J]. Powder Technology,2008,183(1): 127-132. doi: 10.1016/j.powtec.2007.11.033
    [18] 孙海俊,胡春波,徐义华. 粉末推进剂流化过程及高压流化机制分析[J]. 推进技术,2018,39(12): 2853-2862. SUN Haijun,HU Chunbo,XU Yihua. Analysis on fluidization process and mechanism of powder propellant at high pressure[J]. Journal of Propulsion Technology,2018,39(12): 2853-2862. (in Chinese

    SUN Haijun, HU Chunbo, XU Yihua. Analysis on fluidization process and mechanism of powder propellant at high pressure[J]. Journal of Propulsion Technology, 2018, 39(12): 2853-2862. (in Chinese)
    [19] SUN Haijun,HU Chunbo,ZHU Xiaofei. Numerical simulation on the powder propellant pickup characteristics of feeding system at high pressure[J]. Acta Astronautica,2017,139: 85-97. doi: 10.1016/j.actaastro.2017.06.030
    [20] REN Guanlong,SUN Haijun,XU Yihua,et al. Effect of elevated pressure on gas-solid flow properties in a powder feeding system[J]. Polish Journal of Chemical Technology,2022,24(3): 41-52. doi: 10.2478/pjct-2022-0021
    [21] LAN Xingying,XU Chunming,GAO Jinsen,et al. Influence of solid-phase wall boundary condition on CFD simulation of spouted beds[J]. Chemical Engineering Science,2012,69(1): 419-430. doi: 10.1016/j.ces.2011.10.064
    [22] AMIRI Z,MOVAHEDIRAD S,SHIRVANI M,et al. The role of bubble injection characteristics at incipient fluidization condition on the mixing of particles in a gas-solid fluidized bed at high operating pressures: a CFD-DPM approach[J]. Powder Technology,2017,305: 739-747. doi: 10.1016/j.powtec.2016.10.055
    [23] JIANG Xiaofeng,ZHONG Wenqi,LIU Xuejiao,et al. Study on gas-solid flow behaviors in a spouted bed at elevated pressure: numerical simulation aspect[J]. Powder Technology,2014,264: 22-30. doi: 10.1016/j.powtec.2014.05.015
    [24] 任冠龙,孙海俊,徐义华,等. 动壁作用下流化气量对粉末供给特性的影响研究[J]. 航空兵器,2022,29(3): 73-81. REN Guanlong,SUN Haijun,XU Yihua,et al. Effects of gas flow rate on powder supplying characteristics under the action of moving wall[J]. Aero Weaponry,2022,29(3): 73-81. (in Chinese doi: 10.12132/ISSN.1673-5048.2021.0194

    REN Guanlong, SUN Haijun, XU Yihua, et al. Effects of gas flow rate on powder supplying characteristics under the action of moving wall[J]. Aero Weaponry, 2022, 29(3): 73-81. (in Chinese) doi: 10.12132/ISSN.1673-5048.2021.0194
    [25] LI Chao,ZHU Xiaofei,DENG Zhe,et al. Powder feeding in a powder engine under different gas-solid ratios[J]. Acta Astronautica,2021,189: 712-721. doi: 10.1016/j.actaastro.2021.08.022
    [26] LI Chao,HU Chunbo,XIN Xin,et al. Experimental study on the operation characteristics of aluminum powder fueled ramjet[J]. Acta Astronautica,2016,129: 74-81. doi: 10.1016/j.actaastro.2016.08.032
    [27] YANG Jiangang,HU Chunbo,QIANG Wei,et al. Experimental investigation on the starting and flow regulation characteristics of powder supply system for powder engines[J]. Acta Astronautica,2021,180: 73-84. doi: 10.1016/j.actaastro.2020.12.004
    [28] LI Yue,HU Chunbo,ZHU Xiaofei,et al. Experimental study on combustion characteristics of powder magnesium and carbon dioxide in rocket engine[J]. Acta Astronautica,2019,155: 334-349. doi: 10.1016/j.actaastro.2018.11.006
    [29] TANG Jie,LU Haifeng,GUO Xiaolei,et al. Discharge characteristics of non-gravity-driven powder in horizontal silos[J]. Powder Technology,2022,400: 117234. doi: 10.1016/j.powtec.2022.117234
    [30] GALLAGHER C,JALALIFAR S,SALEHI F,et al. A two-fluid model for powder fluidisation in turbulent channel flows[J]. Powder Technology,2021,389: 163-177. doi: 10.1016/j.powtec.2021.05.019
    [31] 金贺龙,蒋淑园,王浩,等. 基于气固两相双流体模型研究火箭发动机斜切喷管流场特性[J]. 航空动力学报,2020,35(4): 867-877. JIN Helong,JIANG Shuyuan,WANG Hao,et al. Flow field characteristics of angle-cut nozzle of solid rocket motor based on gas-solid two phase flow model[J]. Journal of Aerospace Power,2020,35(4): 867-877. (in Chinese

    JIN Helong, JIANG Shuyuan, WANG Hao, et al. Flow field characteristics of angle-cut nozzle of solid rocket motor based on gas-solid two phase flow model[J]. Journal of Aerospace Power, 2020, 35(4): 867-877. (in Chinese)
    [32] VERMA V,DEEN N G,PADDING J T,et al. Two-fluid modeling of three-dimensional cylindrical gas-solid fluidized beds using the kinetic theory of granular flow[J]. Chemical Engineering Science,2013,102: 227-245. doi: 10.1016/j.ces.2013.08.002
    [33] HERNÁNDEZ-JIMÉNEZ F,GARCIA-GUTIERREZ L M,ACOSTA-IBORRA A,et al. Numerical study of the effect of pressure and temperature on the fluidization of solids with air and (supercritical) CO2[J]. The Journal of Supercritical Fluids,2019,147: 271-283. doi: 10.1016/j.supflu.2018.11.008
    [34] LI Jie,KUIPERS J A M. Effect of pressure on gas-solid flow behavior in dense gas-fluidized beds: a discrete particle simulation study[J]. Powder Technology,2002,127(2): 173-184. doi: 10.1016/S0032-5910(02)00116-X
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  57
  • HTML浏览量:  37
  • PDF量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-16
  • 网络出版日期:  2024-01-05

目录

    /

    返回文章
    返回