留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双组分混合气态燃料爆震起爆特性

张晋 姜俞光 王之声 张启斌 范玮

张晋, 姜俞光, 王之声, 等. 双组分混合气态燃料爆震起爆特性[J]. 航空动力学报, 2024, 39(8):20220604 doi: 10.13224/j.cnki.jasp.20220604
引用本文: 张晋, 姜俞光, 王之声, 等. 双组分混合气态燃料爆震起爆特性[J]. 航空动力学报, 2024, 39(8):20220604 doi: 10.13224/j.cnki.jasp.20220604
ZHANG Jin, JIANG Yuguang, WANG Zhisheng, et al. Detonation-initiation characteristics of the bi-component mixture fuel[J]. Journal of Aerospace Power, 2024, 39(8):20220604 doi: 10.13224/j.cnki.jasp.20220604
Citation: ZHANG Jin, JIANG Yuguang, WANG Zhisheng, et al. Detonation-initiation characteristics of the bi-component mixture fuel[J]. Journal of Aerospace Power, 2024, 39(8):20220604 doi: 10.13224/j.cnki.jasp.20220604

双组分混合气态燃料爆震起爆特性

doi: 10.13224/j.cnki.jasp.20220604
基金项目: 国家自然科学基金(52176133,51876179); 国家科技重大专项(2017-Ⅲ-0005-0030)
详细信息
    作者简介:

    张晋(1992-),男,博士生,主要从事液态碳氢燃料爆震燃烧特性及传热特性研究。E-mail:red.lollipoper@mail.nwpu.edu.cn

    通讯作者:

    姜俞光(1990-),男,副教授,博士,主要从事先进空天动力装置热管理研究。E-mail:jiangyuguang@nwpu.edu.cn

  • 中图分类号: V231.22

Detonation-initiation characteristics of the bi-component mixture fuel

  • 摘要:

    在爆震燃烧中,与液态燃料相比气态燃料具有更好的起爆性能和可爆极限。在一定温度和压力下,液态碳氢燃料燃烧伊始发生的吸热裂解反应会产生小胞格尺寸的轻质气态小分子,其混合物组合可有效降低可燃混合物的临界起爆能量并提升燃料整体的起爆性能。研究液态燃料裂解反应中气态产物组分及含量对缓燃向爆震转变过程时间及距离的影响规律,有助于掌握形成易爆混合物的条件,指导液态燃料爆震燃烧室的设计。本文采用光学测量方法,对RP-3航空煤油热裂解反应的主要产物双组分气态燃料的起爆性能进行了实验研究,对不同组分燃料的起爆过程中火焰传播速度进行对比。结果表明:生成的甲烷摩尔分数大于60%时不能实现爆震起爆,烯烃类等气态不饱和烃可增强混合燃料的起爆性能。同时,适当地提高当量比,可以扩大混合燃料的可爆极限。

     

  • 图 1  航空煤油裂解反应气态产物组分

    Figure 1.  Gaseous product distributions of Aviation Kerosene cracking reaction

    图 2  不同气态燃料/氧化剂的临界起爆能量

    Figure 2.  Initiation energy for various stoichiometric fuel/oxidizer mixtures

    图 3  实验系统示意图

    Figure 3.  Schematic diagram of the experimental setup

    图 4  爆震管截面图

    Figure 4.  Section of the detonation tube

    图 5  火焰加速过程

    Figure 5.  Image of flame acceleration

    图 6  乙烯爆震燃烧火焰速度

    Figure 6.  Detonation velocity of C2H4/Oxidizer mixture

    图 7  甲烷/乙烯混合燃料火焰加速过程

    Figure 7.  Flame acceleration of CH4/C2H4 mixture fuel

    图 8  丙烯/乙烯混合燃料火焰加速过程

    Figure 8.  Flame acceleration of C3H6/C2H4 mixture fuel

    图 9  甲烷/丙烯混合燃料火焰加速过程

    Figure 9.  Flame acceleration of CH4/C3H6 mixture fuel

    图 10  不同当量比甲烷/乙烯混合燃料火焰加速过程

    Figure 10.  Flame acceleration of CH4/C3H6 mixture fuel with different equivalent ratio

    图 11  甲烷/丙烯双组分燃料可爆极限

    Figure 11.  Explosion limit of CH4/C3H6 mixture fuel

    表  1  乙烯爆震燃烧工况

    Table  1.   Working condition of C2H4 detonation

    序号温度/K压力/kPa当量比φ
    1293951.1
    2293951.2
    3293951.3
    4293951.4
    下载: 导出CSV
  • [1] NICHOLLS J A,WILKINSON H R,MORRISON R B. Intermittent detonation as a thrust-producing mechanism[J]. Journal of Jet Propulsion,1957,27(5): 534-541. doi: 10.2514/8.12851
    [2] PARETE-KOON S T,SMITH C R,PAPATHEODORE T L,et al. A review of direct numerical simulations of astrophysical detonations and their implications[J]. Frontiers of Physics,2013,8(2): 189-198. doi: 10.1007/s11467-013-0279-y
    [3] KAILASANATH K,SCHWER D A. High-fidelity simulations of pressure-gain combustion devices based on detonations[J]. Journal of Propulsion and Power,2017,33(1): 153-162. doi: 10.2514/1.B36169
    [4] JIN Le,FAN Wei,WANG Ke,et al. Review on the recent development of multi-mode combined detonation engine[J]. International Journal of Turbo & Jet-Engines,2013,30(3): 303-312.
    [5] LU F,CARTER D,WILSON D. Development of a large pulse detonation engine demonstrator: AIAA2011-5544[R]. Reston,US: AIAA,2011.
    [6] KAILASANATH K. Research on pulse detonation combustion systems: a status report: AIAA2009-631[R]. Reston,US: AIAA,2009.
    [7] KAILASANATH K. Review of propulsion applications of detonation waves[J]. AIAA Journal,2000,38: 1698-1708. doi: 10.2514/2.1156
    [8] EDWARDS T. Liquid fuels and propellants for aerospace propulsion: 1903-2003[J]. Journal of Propulsion and Power,2003,19(6): 1089-1107. doi: 10.2514/2.6946
    [9] KANESHIGE M,SHEPHERD J E. Detonation database: FM97-8 [R]. Pasadena,US: California Institute of Technology,1997.
    [10] FAN Wei,YAN Chuanjun,HUANG Xiqiao,et al. Experimental investigation on two-phase pulse detonation engine[J]. Combustion and Flame,2003,133(4): 441-450. doi: 10.1016/S0010-2180(03)00043-9
    [11] BROPHY C M,HETZER D,FORSTER L D. Detonation studies of JP-10 with oxygen and air for pulse detonation engine development: AIAA1998-4003 [R]. Reno,US: AIAA,1998.
    [12] KNYSTAUTAS R. Measurements of cell size in hydrocarbon-air mixtures and predictions of critical tube diameter,critical initiation energy,and detonability limits[C]//Dynamics of Shock Waves,Explosions,and Detonations. New York: AIAA,1985: 23-37.
    [13] SCHAUER F,MISER C,TUCKER C,et al. Detonation initiation of hydrocarbon-air mixtures in a pulsed detonation engine: AIAA2005-1343[R]. Reston,US: AIAA,2005.
    [14] FICKETT W,DAVIS W C. Detonation: theory and experiment[M]. New York: Dover Publications Incorporated,1979.
    [15] COOPER M,SHEPHERD J. Experiments studying thermal cracking,catalytic cracking,and pre-mixed partial oxidation of JP-10: AIAA2003-4687 [R]. Reston,US: AIAA,2003.
    [16] HELFRICH T,SCHAUER F,BRADLEY R,et al. Evaluation of catalytic and thermal cracking in a JP-8 fueled pulsed detonation engine: AIAA2007-235[R]. Reno,US: AIAA,2007.
    [17] HELFRICH T,SCHAUER F,BRADLEY R,et al. Ignition and detonation-initiation characteristics of hydrogen and hydrocarbon fuels in a PDE: AIAA2007-234[R]. Reno,US: AIAA,2007 .
    [18] AUSTIN J M,SHEPHERD J E. Detonations in hydrocarbon fuel blends[J]. Combustion and Flame,2003,132(1/2): 73-90.
    [19] SHAMSHIN I O,KAZACHENKO M V,FROLOV S M,et al. Transition of deflagration to detonation in ethylene-hydrogen-air mixtures[J]. International Journal of Hydrogen Energy,2022,47(37): 16676-16685. doi: 10.1016/j.ijhydene.2022.03.158
    [20] ZHANG Yun,CHENG Yangfan,SU Jian,et al. Experimental investigation on the near detonation limits of propane/hydrogen/oxygen mixtures in a rectangular tube[J]. International Journal of Hydrogen Energy,2020,45(1): 1107-1113. doi: 10.1016/j.ijhydene.2019.10.249
    [21] SHAMSHIN I O,KAZACHENKO M V,FROLOV S M,et al. Deflagration-to-detonation transition in stochiometric mixtures of the binary methane-hydrogen fuel with air[J]. International Journal of Hydrogen Energy,2021,46(68): 34046-34058. doi: 10.1016/j.ijhydene.2021.07.209
    [22] ZHANG Bo. Detonation limits in methane-hydrogen-oxygen mixtures: dominant effect of induction length[J]. International Journal of Hydrogen Energy,2019,44(41): 23532-23537. doi: 10.1016/j.ijhydene.2019.07.053
    [23] ZHANG Bo,PANG Lei,GAO Yuan. Detonation limits in binary fuel blends of methane/hydrogen mixtures[J]. Fuel,2016,168: 27-33. doi: 10.1016/j.fuel.2015.11.073
    [24] ZHANG Bo,PANG Lei,SHEN Xiaobo,et al. Measurement and prediction of detonation cell size in binary fuel blends of methane/hydrogen mixtures[J]. Fuel,2016,172: 196-199. doi: 10.1016/j.fuel.2016.01.034
    [25] ZHONG Fengquan,FAN Xuejun,YU Gong,et al. Thermal cracking and heat sink capacity of aviation kerosene under supercritical conditions[J]. Journal of Thermophysics and Heat Transfer,2011,25(3): 450-456. doi: 10.2514/1.51399
    [26] MOHRI K,GÖRS S,SCHÖLER J,et al. Instantaneous 3D imaging of highly turbulent flames using computed tomography of chemiluminescence[J]. Applied Optics,2017,56(26): 7385-7395. doi: 10.1364/AO.56.007385
    [27] MICKA D J,DRISCOLL J F. Combustion characteristics of a dual-mode scramjet combustor with cavity flameholder[J]. Proceedings of the Combustion Institute,2009,32(2): 2397-2404. doi: 10.1016/j.proci.2008.06.192
    [28] SHIN D H,PLAKS D V,LIEUWEN T,et al. Dynamics of a longitudinally forced,bluff body stabilized flame[J]. Journal of Propulsion and Power,2011,27(1): 105-116. doi: 10.2514/1.48056
    [29] EMERSON B,MONDRAGON U,ACHARYA V,et al. Velocity and flame wrinkling characteristics of a transversely forced,bluff-body stabilized flame,part I: experiments and data analysis[J]. Combustion Science and Technology,2013,185(7): 1056-1076. doi: 10.1080/00102202.2013.777714
    [30] 吴石林,张玘. 误差分析与数据处理[M]. 北京: 清华大学出版社,2010.
    [31] CAMARDO L,KING P,STEVENS C,et al. Determination of effective crossover location and dimensions for branched detonation in a pulsed detonation engine: AIAA2012-122[R] Reston,US: AIAA,2012.
    [32] LI Quan,KELLENBERGER M,CICCARELLI G. Geometric influence on the propagation of the quasi-detonations in a stoichiometric H2-O2 mixture[J]. Fuel,2020,269: 117396. doi: 10.1016/j.fuel.2020.117396
    [33] ZHANG Bo,LIU Hong,LI Yuanchang. The effect of instability of detonation on the propagation modes near the limits in typical combustible mixtures[J]. Fuel,2019,253: 305-310. doi: 10.1016/j.fuel.2019.05.006
    [34] LEE J H S. The detonation phenomenon[M]. Cambridge,UK: Cambridge University Press,2008.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  42
  • HTML浏览量:  27
  • PDF量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-20
  • 网络出版日期:  2023-12-20

目录

    /

    返回文章
    返回