Influence mechanism of low-pressure turbine blade vibration on separation and transition at low Reynolds number
-
摘要:
低压涡轮叶片振动显著影响边界层演化过程和流动状态,进而影响气动性能。为了探究低压涡轮叶片振动对分离转捩的影响机制,利用数值模拟手段对比分析了低雷诺数(
Re =25000 )下低压涡轮叶片不同频率的振动对吸力面边界层分离及转捩和流动损失的影响。研究表明:叶片因振动与流体产生的相对运动使分离流与主流提前相遇从而引发转捩提前,限制分离泡的发展,缩减分离泡的尺寸,削弱分离泡内部回流掺混。叶片振动使边界层厚度有所减小,削弱了尾缘附近的流动阻塞与尾迹掺混,大幅度降低了分离及转捩过程中的湍流脉动水平,上述变化使总压损失得到了大幅度降低,最高可以降低23.02%,气动性能得到大大改善。Abstract:Numerical simulation methods were used to compare and analyze the effects of low-pressure turbine blade vibration at different frequencies on the separation and transition of suction surface boundary layer and flow losses at low Reynolds number (
Re =25000 ), with its aim of exploring the influence mechanism of low-pressure turbine blade vibration on separation and transition. The research showed that the relative motion between the fluid and the blade due to the blade vibration made the separation flow meet the main flow in advance. The advanced transition caused by this was able to limit the development of the separation bubble, reduce the size of the separation bubble and weaken the backflow mixing inside the separation bubble. The blade vibration thinned the boundary layer, weakened the flow blockage and wake mixing near the trailing edge and substantially lowered the turbulent pulsation level in the separation and transition process. Furthermore, the impacts above reduced the total pressure loss up to 23.02%, and improved the aerodynamic performance significantly.-
Key words:
- blade vibration /
- low-pressure turbine blade /
- separation /
- transition /
- aerodynamic loss
-
表 1 叶型PACK-B的几何特性及气动参数
Table 1. Geometric characteristics and aerodynamic parameters of airfoil PACK-B
参数 数值 弦长C/mm 83.28 轴向弦长Cax/mm 75.4 栅距S/mm 66.8 几何进气角β1/(°) 35 几何出气角β2/(°) 60 载荷系数 1.1 -
[1] ROBERTS W B. The effect of Reynolds number and laminar separation on axial cascade performance[J]. Journal of Engineering for Power,1975,97(2): 261-273. doi: 10.1115/1.3445978 [2] SUTTON E P,EVANS G P,MCGUINNESS M D,et al. Influence of wall vibrations on a flow with boundary-layer separation at a convex edge[C]//MICHEL R,COUSTEIX J,HOUDEVILLE R. Unsteady turbulent shear flows. Berlin,Germany: Springer,1981: 285-293. [3] 李虹杨,郑赟. 粗糙度对涡轮叶片流动转捩及传热特性的影响[J]. 北京航空航天大学学报,2016,42(10): 2038-2047. LI Hongyang,ZHENG Yun. Effect of surface roughness on flow transition and heat transfer of turbine blade[J]. Journal of Beijing University of Aeronautics and Astronautics,2016,42(10): 2038-2047. (in ChineseLI Hongyang, ZHENG Yun. Effect of surface roughness on flow transition and heat transfer of turbine blade[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10): 2038-2047. (in Chinese) [4] ABUAF N,BUNKER R S,LEE C P. Effects of surface roughness on heat transfer and aerodynamic performance of turbine airfoils[J]. Journal of Turbomachinery,1998,120(3): 522-529. doi: 10.1115/1.2841749 [5] 孙爽,雷志军,朱俊强,等. 粗糙度对超高负荷低压涡轮边界层影响[J]. 推进技术,2014,35(3): 347-355. SUN Shuang,LEI Zhijun,ZHU Junqiang,et al. Effects of roughness on boundary layer of ultra-high-lift low-pressure turbine[J]. Journal of Propulsion Technology,2014,35(3): 347-355. (in ChineseSUN Shuang, LEI Zhijun, ZHU Junqiang, et al. Effects of roughness on boundary layer of ultra-high-lift low-pressure turbine[J]. Journal of Propulsion Technology, 2014, 35(3): 347-355. (in Chinese) [6] MAHALLATI A,MCAULIFFE B R,SJOLANDER S A,et al. Aerodynamics of a low-pressure turbine airfoil at low Reynolds numbers: Part Ⅰ steady flow measurements[J]. Journal of Turbomachinery,2013,135(1): 011010. doi: 10.1115/1.4006319 [7] MAHALLATI A,SJOLANDER S A. Aerodynamics of a low-pressure turbine airfoil at low Reynolds numbers: Part Ⅱ blade-wake interaction[J]. Journal of Turbomachinery,2013,135(1): 011011. doi: 10.1115/1.4006320 [8] HUANG J. Separation control over low pressure turbine blades using plasma actuators[D]. Notre Dame,US: University of Notre Dame,2005. [9] 张银波,郑伟. 雷诺数对低压涡轮附面层转捩影响的数值研究[J]. 燃气涡轮试验与研究,2015,28(2): 14-19,40. ZHANG Yinbo,ZHENG Wei. Numerical investigation for the effect of Reynolds number on low pressure turbine transition[J]. Gas Turbine Experiment and Research,2015,28(2): 14-19,40. (in ChineseZHANG Yinbo, ZHENG Wei. Numerical investigation for the effect of Reynolds number on low pressure turbine transition[J]. Gas Turbine Experiment and Research, 2015, 28(2): 14-19, 40. (in Chinese) [10] 瞿红春,谭天荣,郭君德,等. 非设计状态下尾迹输运对高负荷低压涡轮附面层的影响[J]. 推进技术,2019,40(9): 1953-1962. QU Hongchun,TAN Tianrong,GUO Junde,et al. Effects of transportation of wakes on boundary layer of high-load low pressure turbine at off-design condition[J]. Journal of Propulsion Technology,2019,40(9): 1953-1962. (in ChineseQU Hongchun, TAN Tianrong, GUO Junde, et al. Effects of transportation of wakes on boundary layer of high-load low pressure turbine at off-design condition[J]. Journal of Propulsion Technology, 2019, 40(9): 1953-1962. (in Chinese) [11] 梁赟,刘火星,邹正平. 尾迹对低压涡轮边界层稳定性的影响[J]. 航空动力学报,2016,31(4): 886-893. LIANG Yun,LIU Huoxing,ZOU Zhengping. Influence of wakes on boundary layer stability in low-pressure turbines[J]. Journal of Aerospace Power,2016,31(4): 886-893. (in ChineseLIANG Yun, LIU Huoxing, ZOU Zhengping. Influence of wakes on boundary layer stability in low-pressure turbines[J]. Journal of Aerospace Power, 2016, 31(4): 886-893. (in Chinese) [12] CUI J,NAGABHUSHANA RAO V,TUCKER P G. Numerical investigation of secondary flows in a high-lift low pressure turbine[J]. International Journal of Heat and Fluid Flow,2017,63: 149-157. doi: 10.1016/j.ijheatfluidflow.2016.05.018 [13] COULL J D,HODSON H P. Unsteady boundary-layer transition in low-pressure turbines[J]. Journal of Fluid Mechanics,2011,681: 370-410. doi: 10.1017/jfm.2011.204 [14] SENGUPTA A,TUCKER P. Effects of forced frequency oscillations and free stream turbulence on the separation-induced transition in pressure gradient dominated flows[J]. Physics of Fluids,2020,32(10): 104105. doi: 10.1063/5.0022865 [15] SENGUPTA A,TUCKER P. Effects of forced frequency oscillations and unsteady wakes on the separation-induced transition in pressure gradient dominated flows[J]. Physics of Fluids,2020,32(9): 094113. doi: 10.1063/5.0023679 [16] NAKHCHI M E,NAUNG S W,RAHMATI M. DNS of secondary flows over oscillating low-pressure turbine using spectral/hp element method[J]. International Journal of Heat and Fluid Flow,2020,86: 108684. doi: 10.1016/j.ijheatfluidflow.2020.108684 [17] SCHWARZBACH F,MIMIC D,HERBST F. Profile aerodynamics of an oscillating low-pressure-turbine blade[J]. International Journal of Gas Turbine,Propulsion and Power Systems,2020,11(4): 68-75. doi: 10.38036/jgpp.11.4_68 [18] MEDIC G,ZHANG V,WANG Guolei,et al. Prediction of transition and losses in compressor cascades using large-eddy simulation[J]. Journal of Turbomachinery,2016,138(12): 121001. doi: 10.1115/1.4033514 [19] QU Xiao,ZHANG Yanfeng,LU Xingen,et al. Effects of periodic wakes on the endwall secondary flow in high-lift low-pressure turbine cascades at low Reynolds numbers[J]. Proceedings of the Institution of Mechanical Engineers,Part G: Journal of Aerospace Engineering,2019,233(1): 354-368. [20] 张波,李伟,卢新根,等. 变工况下超高负荷低压涡轮叶片边界层被动控制[J]. 航空动力学报,2012,27(12): 2805-2813. ZHANG Bo,LI Wei,LU Xingen,et al. Ultra-high-lift low-pressure turbine blade boundary layer passive control in different flow conditions[J]. Journal of Aerospace Power,2012,27(12): 2805-2813. (in ChineseZHANG Bo, LI Wei, LU Xingen, et al. Ultra-high-lift low-pressure turbine blade boundary layer passive control in different flow conditions[J]. Journal of Aerospace Power, 2012, 27(12): 2805-2813. (in Chinese) [21] MENTER F. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal,1994,32: 1598-1605. doi: 10.2514/3.12149 [22] 屈骁. 超高负荷低压涡轮端区非定常流动机理及新型调控方法研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所),2020. QU Xiao. The investigation of unsteady flow mechanism and new flow control methods in ultra-high-lift LPT cascades[D]. Beijing: Institute of Engineering Thermophysics,Chinese Academy of Sciences,2020. (in ChineseQU Xiao. The investigation of unsteady flow mechanism and new flow control methods in ultra-high-lift LPT cascades[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2020. (in Chinese) [23] 王名扬,赵胜丰,李紫良,等. 低雷诺数下高亚声速压气机叶型流动损失机理研究[J]. 推进技术,2020,41(5): 1046-1054. WANG Mingyang,ZHAO Shengfeng,LI Ziliang,et al. Flow and loss mechanism of high subsonic compressor airfoil under low Reynolds number conditions[J]. Journal of Propulsion Technology,2020,41(5): 1046-1054. (in ChineseWANG Mingyang, ZHAO Shengfeng, LI Ziliang, et al. Flow and loss mechanism of high subsonic compressor airfoil under low Reynolds number conditions[J]. Journal of Propulsion Technology, 2020, 41(5): 1046-1054. (in Chinese) -