留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

通用飞机螺旋桨翼型多目标优化

王志 王赫鸣 王紫荆 项松

王志, 王赫鸣, 王紫荆, 等. 通用飞机螺旋桨翼型多目标优化[J]. 航空动力学报, 2024, 39(9):20220636 doi: 10.13224/j.cnki.jasp.20220636
引用本文: 王志, 王赫鸣, 王紫荆, 等. 通用飞机螺旋桨翼型多目标优化[J]. 航空动力学报, 2024, 39(9):20220636 doi: 10.13224/j.cnki.jasp.20220636
WANG Zhi, WANG Heming, WANG Zijing, et al. Multi-objective optimization of propeller airfoil for general aviation aircraft[J]. Journal of Aerospace Power, 2024, 39(9):20220636 doi: 10.13224/j.cnki.jasp.20220636
Citation: WANG Zhi, WANG Heming, WANG Zijing, et al. Multi-objective optimization of propeller airfoil for general aviation aircraft[J]. Journal of Aerospace Power, 2024, 39(9):20220636 doi: 10.13224/j.cnki.jasp.20220636

通用飞机螺旋桨翼型多目标优化

doi: 10.13224/j.cnki.jasp.20220636
基金项目: 辽宁省教育厅重点攻关类项目(JYT2020158)
详细信息
    作者简介:

    王志(1979-),男,副教授,博士,主要从事航空发动机振动、强度与噪声研究

  • 中图分类号: V211

Multi-objective optimization of propeller airfoil for general aviation aircraft

  • 摘要:

    为获得具有较高气动性能、较低气动噪声的翼型,对某通用飞机螺旋桨所用RAF-6翼型进行优化设计。首先,使用CFD/FW-H(Ffowcs Williams-Hawkings)方法对翼型进行了流场与声场数值仿真计算;其次,分别研究翼型最大厚度、最大厚度位置、后缘下弯角度与后缘下弯位置4个设计变量对其气动性能与气动噪声的影响规律;进而,以巡航状态为设计点,以高升阻比及低气动噪声为优化目标对翼型进行多目标优化设计,获得Pareto解集;最后,通过试验验证翼型优化后的螺旋桨拉力提高14.7%,气动噪声降低2.3 dB。

     

  • 图 1  翼型流场网格

    Figure 1.  Flow field grid of airfoil

    图 2  噪声接收点

    Figure 2.  Noise receivers

    图 3  网格无关性验证

    Figure 3.  Grid independence verification

    图 4  计算结果

    Figure 4.  Calculation result

    图 5  翼型参数示意图

    Figure 5.  Schematic diagram of airfoil parameters

    图 6  不同最大厚度翼型的气动特性

    Figure 6.  Aerodynamic characteristics of airfoil with different maximum thicknesses

    图 7  不同最大厚度翼型的气动噪声

    Figure 7.  Aerodynamic noise of airfoil with different maximum thicknesses

    图 8  不同最大厚度位置翼型的气动特性

    Figure 8.  Aerodynamic characteristics of airfoil with different maximum thickness positions

    图 9  不同最大厚度位置翼型的气动噪声

    Figure 9.  Aerodynamic noise of airfoil with different maximum thickness positions

    图 10  不同后缘下弯角度翼型的气动特性

    Figure 10.  Aerodynamic characteristics of airfoil with different trailing-edge downbend angles

    图 11  不同后缘下弯角度翼型的气动噪声

    Figure 11.  Aerodynamic noise of airfoil with different trailing-edge downbend angles

    图 12  不同后缘下弯位置翼型的气动特性

    Figure 12.  Aerodynamic characteristics of airfoils with different trailing-edge downbend positions

    图 13  不同后缘下弯位置翼型的气动噪声

    Figure 13.  Aerodynamic noise of airfoils with different trailing-edge downbend positions

    图 14  NSGA-Ⅱ算法流程图

    Figure 14.  Flow chart of NSGA-Ⅱ algorithm

    图 15  Pareto解集

    Figure 15.  Pareto solution set

    图 16  翼型外形对比

    Figure 16.  Comparison of shape of airfoils

    图 17  优化前后翼型气动特性对比

    Figure 17.  Comparison of aerodynamic characteristics of airfoil before and after optimization

    图 18  优化前后翼型气动噪声对比

    Figure 18.  Comparison of aerodynamic noise of airfoil before and after optimization

    图 19  各攻角下噪声声压级对比

    Figure 19.  Comparison of sound pressure level at different angles of attack

    图 20  优化螺旋桨试验

    Figure 20.  Optimized propeller test

    表  1  优化结果

    Table  1.   Optimization results

    参数 基准翼型 优化翼型 增量
    升力系数 0.824 0.889 +7.89%
    阻力系数 0.0168 0.0165 −1.79%
    升阻比 48.92 53.91 +10.2%
    声压级/dB 132.933 131.332 −1.6
    下载: 导出CSV

    表  2  螺旋桨优化前后结果对比

    Table  2.   Comparison of result of propeller before and after optimization

    参数 基准螺旋桨 优化螺旋桨
    试验值 计算值 试验值 计算值
    拉力/N 327.74 330.53 375.92 380.36
    效率/% 78 80.5 79 81.6
    声压级/dB 87.87 86.32 85.57 84.74
    下载: 导出CSV
  • [1] 杨凤田,范振伟,项松,等. 中国电动飞机技术创新与实践[J]. 航空学报,2021,42(3): 624619. YANG Fengtian,FAN Zhenwei,XIANG Song,et al. Technical innovation and practice of electric aircraft in China[J]. Acta Aeronautica et Astronautica Sinica,2021,42(3): 624619. (in Chinese

    YANG Fengtian, FAN Zhenwei, XIANG Song, et al. Technical innovation and practice of electric aircraft in China[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 624619. (in Chinese)
    [2] 匡宇,张邦楚,姜鹏,等. 国外全电动飞机的研究现状与发展趋势[J]. 飞航导弹,2021(3): 93-98. KUANG Yu,ZHANG Bangchu,JIANG Peng,et al. Research status and development trend of all-electric aircraft abroad[J]. Aerodynamic Missile Journal,2021(3): 93-98. (in Chinese

    KUANG Yu, ZHANG Bangchu, JIANG Peng, et al. Research status and development trend of all-electric aircraft abroad[J]. Aerodynamic Missile Journal, 2021(3): 93-98. (in Chinese)
    [3] JEONG S,MURAYAMA M,YAMAMOTO K. Efficient optimization design method using Kriging model[J]. Journal of Aircraft,2005,42(2): 413-420. doi: 10.2514/1.6386
    [4] 李沛峰,张彬乾,陈迎春. 基于响应面和遗传算法的翼型优化设计方法研究[J]. 西北工业大学学报,2012,30(3): 395-401. LI Peifeng,ZHANG Binqian,CHEN Yingchun. An effective transonic airfoil optimization method using response surface model(RSM)[J]. Journal of Northwestern Polytechnical University,2012,30(3): 395-401. (in Chinese doi: 10.3969/j.issn.1000-2758.2012.03.016

    LI Peifeng, ZHANG Binqian, CHEN Yingchun. An effective transonic airfoil optimization method using response surface model(RSM)[J]. Journal of Northwestern Polytechnical University, 2012, 30(3): 395-401. (in Chinese) doi: 10.3969/j.issn.1000-2758.2012.03.016
    [5] 常林森,张倩莹,郭雪岩. 基于高斯过程回归和遗传算法的翼型优化设计[J]. 航空动力学报,2021,36(11): 2306-2316. CHANG Linsen,ZHANG Qianying,GUO Xueyan. Airfoil optimization design based on Gaussian process regression and genetic algorithm[J]. Journal of Aerospace Power,2021,36(11): 2306-2316. (in Chinese

    CHANG Linsen, ZHANG Qianying, GUO Xueyan. Airfoil optimization design based on Gaussian process regression and genetic algorithm[J]. Journal of Aerospace Power, 2021, 36(11): 2306-2316. (in Chinese)
    [6] TANG Jiwei,HU Yu,SONG Bifeng,et al. Unsteady aerodynamic optimization of airfoil for cycloidal propellers based on surrogate model[J]. Journal of Aircraft,2017,54(4): 1241-1256. doi: 10.2514/1.C033649
    [7] LEE S,LEE S,RYI J,et al. Design optimization of wind turbine blades for reduction of airfoil self-noise[J]. Journal of Mechanical Science and Technology,2013,27(2): 413-420. doi: 10.1007/s12206-012-1254-1
    [8] SANAYE S,HASSANZADEH A. Multi-objective optimization of airfoil shape for efficiency improvement and noise reduction in small wind turbines[J]. Journal of Renewable and Sustainable Energy,2014,6(5): 5-15.
    [9] 汪泉,洪星,杨建忠,等. 低噪声风力机叶片气动外形优化设计[J]. 中国机械工程,2018,29(13): 1574-1579,1587. WANG Quan,HONG Xing,YANG Jianzhong,et al. Aerodynamic optimal design of low noise wind turbine blades[J]. China Mechanical Engineering,2018,29(13): 1574-1579,1587. (in Chinese

    WANG Quan, HONG Xing, YANG Jianzhong, et al. Aerodynamic optimal design of low noise wind turbine blades[J]. China Mechanical Engineering, 2018, 29(13): 1574-1579, 1587. (in Chinese)
    [10] REN Xudong,ZHAO Zijie,GAO C,et al. Investigation of NACA 0012 airfoil periodic flows in a transonic wind tunnel[R]. AIAA 2013-791,2013.
    [11] MOLINARI G,QUACK M,DMITRIEV V,et al. Aero-structural optimization of morphing airfoils for adaptive wings[J]. Journal of Intelligent Material Systems and Structures,2011,22(10): 1075-1089. doi: 10.1177/1045389X11414089
    [12] 陆维爽,田云,刘沛清,等. GAW-1翼型前后缘变弯度气动性能研究[J]. 航空学报,2016,37(2): 437-450. LU Weishuang,TIAN Yun,LIU Peiqing,et al. Aerodynamic performance of GAW-1 airfoil leading-edge and trailing-edge variable camber[J]. Acta Aeronautica et Astronautica Sinica,2016,37(2): 437-450. (in Chinese

    LU Weishuang, TIAN Yun, LIU Peiqing, et al. Aerodynamic performance of GAW-1 airfoil leading-edge and trailing-edge variable camber[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 437-450. (in Chinese)
    [13] 冉景洪,刘子强,白鹏. 相对厚度对低雷诺数流动中翼型动态气动力特性的影响[J]. 空气动力学学报,2008,26(2): 178-185. RAN Jinghong,LIU Ziqiang,BAI Peng. The effect of relative thickness to the dynamic aerodynamic characteristics about pitching airfoils[J]. Acta Aerodynamica Sinica,2008,26(2): 178-185. (in Chinese

    RAN Jinghong, LIU Ziqiang, BAI Peng. The effect of relative thickness to the dynamic aerodynamic characteristics about pitching airfoils[J]. Acta Aerodynamica Sinica, 2008, 26(2): 178-185. (in Chinese)
    [14] DEB K,AGRAWAL S,PRATAP A,et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-Ⅱ[M]//Parallel problem solving from nature PPSN VI. Berlin,Germany: Springer,2000: 849-858.
    [15] 赵鸿华,宋双文,王志凯. 基于NSGA-Ⅱ算法的小弯管冲击冷却多目标优化[J]. 航空动力学报,2024,39(6):20210688. ZHAO Honghua,SONG Shuangwen,WANG Zhikai. Multi-objective optimization of impingement coolingof concave wall based on NSGA-Ⅱ algorithm[J]. Journal of Aerospace Power,2024,39(6):20210688. (in Chinese

    ZHAO Honghua, SONG Shuangwen, WANG Zhikai. Multi-objective optimization of impingement coolingof concave wall based on NSGA-Ⅱ algorithm[J]. Journal of Aerospace Power, 2024, 39(6): 20210688. (in Chinese)
    [16] 刘远强,李天,白俊强,等. 通用飞机高升力层流翼型优化设计研究[J]. 西北工业大学学报,2017,35(2): 339-347. LIU Yuanqiang,LI Tian,BAI Junqiang,et al. Opotimization design of high-lift laminar airfoil for general aircraft[J]. Journal of Northwestern Polytechnical University,2017,35(2): 339-347. (in Chinese

    LIU Yuanqiang, LI Tian, BAI Junqiang, et al. Opotimization design of high-lift laminar airfoil for general aircraft[J]. Journal of Northwestern Polytechnical University, 2017, 35(2): 339-347. (in Chinese)
    [17] 项松,杨凤田,吴江,等. 某型两叶螺旋桨的设计及风洞试验[J]. 飞行力学,2019,37(2): 83-86,91. XIANG Song,YANG Fengtian,WU Jiang,et al. Design and wind tunnel test of a two-blade propeller[J]. Flight Dynamics,2019,37(2): 83-86,91. (in Chinese

    XIANG Song, YANG Fengtian, WU Jiang, et al. Design and wind tunnel test of a two-blade propeller[J]. Flight Dynamics, 2019, 37(2): 83-86, 91. (in Chinese)
    [18] 艾延廷,王腾飞,王志,等. 螺旋桨气动噪声数值模拟和实验研究[J]. 机械设计与制造,2018(11): 57-59. AI Yanting,WANG Tengfei,WANG Zhi,et al. Numerical simulation and experimental methods of aerodynamic noise for propeller[J]. Machinery Design & Manufacture,2018(11): 57-59. (in Chinese doi: 10.3969/j.issn.1001-3997.2018.11.015

    AI Yanting, WANG Tengfei, WANG Zhi, et al. Numerical simulation and experimental methods of aerodynamic noise for propeller[J]. Machinery Design & Manufacture, 2018(11): 57-59. (in Chinese) doi: 10.3969/j.issn.1001-3997.2018.11.015
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  63
  • HTML浏览量:  27
  • PDF量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-30
  • 网络出版日期:  2024-03-07

目录

    /

    返回文章
    返回