Multi-objective optimization of propeller airfoil for general aviation aircraft
-
摘要:
为获得具有较高气动性能、较低气动噪声的翼型,对某通用飞机螺旋桨所用RAF-6翼型进行优化设计。首先,使用CFD/FW-H(Ffowcs Williams-Hawkings)方法对翼型进行了流场与声场数值仿真计算;其次,分别研究翼型最大厚度、最大厚度位置、后缘下弯角度与后缘下弯位置4个设计变量对其气动性能与气动噪声的影响规律;进而,以巡航状态为设计点,以高升阻比及低气动噪声为优化目标对翼型进行多目标优化设计,获得Pareto解集;最后,通过试验验证翼型优化后的螺旋桨拉力提高14.7%,气动噪声降低2.3 dB。
Abstract:In order to obtain an airfoil with higher aerodynamic performance and lower aerodynamic noise, the RAF-6 airfoil for a general aviation aircraft propeller was optimized. The flow field and sound field of the airfoil were simulated by CFD/FW-H method. The influence laws of four design variables, i.e. the maximum thickness, the position of the maximum thickness, the downbending angle and position of trailing edge, on its aerodynamic performance and aerodynamic noise were studied respectively. Taking the cruise state as the design point, the airfoil multi-objective optimization design was carried out with higher lift-drag ratio and lower aerodynamic noise as the optimization objectives, and the Pareto solution set was obtained. The experimental results verified that the optimized airfoil increased the propeller thrust by 14.7% and reduced the aerodynamic noise by 2.3 dB.
-
Key words:
- airfoil /
- aerodynamic performance /
- aerodynamic noise /
- multi-objective optimization /
- NSGA-Ⅱ algorithm
-
表 1 优化结果
Table 1. Optimization results
参数 基准翼型 优化翼型 增量 升力系数 0.824 0.889 +7.89% 阻力系数 0.0168 0.0165 −1.79% 升阻比 48.92 53.91 +10.2% 声压级/dB 132.933 131.332 −1.6 表 2 螺旋桨优化前后结果对比
Table 2. Comparison of result of propeller before and after optimization
参数 基准螺旋桨 优化螺旋桨 试验值 计算值 试验值 计算值 拉力/N 327.74 330.53 375.92 380.36 效率/% 78 80.5 79 81.6 声压级/dB 87.87 86.32 85.57 84.74 -
[1] 杨凤田,范振伟,项松,等. 中国电动飞机技术创新与实践[J]. 航空学报,2021,42(3): 624619. YANG Fengtian,FAN Zhenwei,XIANG Song,et al. Technical innovation and practice of electric aircraft in China[J]. Acta Aeronautica et Astronautica Sinica,2021,42(3): 624619. (in ChineseYANG Fengtian, FAN Zhenwei, XIANG Song, et al. Technical innovation and practice of electric aircraft in China[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 624619. (in Chinese) [2] 匡宇,张邦楚,姜鹏,等. 国外全电动飞机的研究现状与发展趋势[J]. 飞航导弹,2021(3): 93-98. KUANG Yu,ZHANG Bangchu,JIANG Peng,et al. Research status and development trend of all-electric aircraft abroad[J]. Aerodynamic Missile Journal,2021(3): 93-98. (in ChineseKUANG Yu, ZHANG Bangchu, JIANG Peng, et al. Research status and development trend of all-electric aircraft abroad[J]. Aerodynamic Missile Journal, 2021(3): 93-98. (in Chinese) [3] JEONG S,MURAYAMA M,YAMAMOTO K. Efficient optimization design method using Kriging model[J]. Journal of Aircraft,2005,42(2): 413-420. doi: 10.2514/1.6386 [4] 李沛峰,张彬乾,陈迎春. 基于响应面和遗传算法的翼型优化设计方法研究[J]. 西北工业大学学报,2012,30(3): 395-401. LI Peifeng,ZHANG Binqian,CHEN Yingchun. An effective transonic airfoil optimization method using response surface model(RSM)[J]. Journal of Northwestern Polytechnical University,2012,30(3): 395-401. (in Chinese doi: 10.3969/j.issn.1000-2758.2012.03.016LI Peifeng, ZHANG Binqian, CHEN Yingchun. An effective transonic airfoil optimization method using response surface model(RSM)[J]. Journal of Northwestern Polytechnical University, 2012, 30(3): 395-401. (in Chinese) doi: 10.3969/j.issn.1000-2758.2012.03.016 [5] 常林森,张倩莹,郭雪岩. 基于高斯过程回归和遗传算法的翼型优化设计[J]. 航空动力学报,2021,36(11): 2306-2316. CHANG Linsen,ZHANG Qianying,GUO Xueyan. Airfoil optimization design based on Gaussian process regression and genetic algorithm[J]. Journal of Aerospace Power,2021,36(11): 2306-2316. (in ChineseCHANG Linsen, ZHANG Qianying, GUO Xueyan. Airfoil optimization design based on Gaussian process regression and genetic algorithm[J]. Journal of Aerospace Power, 2021, 36(11): 2306-2316. (in Chinese) [6] TANG Jiwei,HU Yu,SONG Bifeng,et al. Unsteady aerodynamic optimization of airfoil for cycloidal propellers based on surrogate model[J]. Journal of Aircraft,2017,54(4): 1241-1256. doi: 10.2514/1.C033649 [7] LEE S,LEE S,RYI J,et al. Design optimization of wind turbine blades for reduction of airfoil self-noise[J]. Journal of Mechanical Science and Technology,2013,27(2): 413-420. doi: 10.1007/s12206-012-1254-1 [8] SANAYE S,HASSANZADEH A. Multi-objective optimization of airfoil shape for efficiency improvement and noise reduction in small wind turbines[J]. Journal of Renewable and Sustainable Energy,2014,6(5): 5-15. [9] 汪泉,洪星,杨建忠,等. 低噪声风力机叶片气动外形优化设计[J]. 中国机械工程,2018,29(13): 1574-1579,1587. WANG Quan,HONG Xing,YANG Jianzhong,et al. Aerodynamic optimal design of low noise wind turbine blades[J]. China Mechanical Engineering,2018,29(13): 1574-1579,1587. (in ChineseWANG Quan, HONG Xing, YANG Jianzhong, et al. Aerodynamic optimal design of low noise wind turbine blades[J]. China Mechanical Engineering, 2018, 29(13): 1574-1579, 1587. (in Chinese) [10] REN Xudong,ZHAO Zijie,GAO C,et al. Investigation of NACA 0012 airfoil periodic flows in a transonic wind tunnel[R]. AIAA 2013-791,2013. [11] MOLINARI G,QUACK M,DMITRIEV V,et al. Aero-structural optimization of morphing airfoils for adaptive wings[J]. Journal of Intelligent Material Systems and Structures,2011,22(10): 1075-1089. doi: 10.1177/1045389X11414089 [12] 陆维爽,田云,刘沛清,等. GAW-1翼型前后缘变弯度气动性能研究[J]. 航空学报,2016,37(2): 437-450. LU Weishuang,TIAN Yun,LIU Peiqing,et al. Aerodynamic performance of GAW-1 airfoil leading-edge and trailing-edge variable camber[J]. Acta Aeronautica et Astronautica Sinica,2016,37(2): 437-450. (in ChineseLU Weishuang, TIAN Yun, LIU Peiqing, et al. Aerodynamic performance of GAW-1 airfoil leading-edge and trailing-edge variable camber[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 437-450. (in Chinese) [13] 冉景洪,刘子强,白鹏. 相对厚度对低雷诺数流动中翼型动态气动力特性的影响[J]. 空气动力学学报,2008,26(2): 178-185. RAN Jinghong,LIU Ziqiang,BAI Peng. The effect of relative thickness to the dynamic aerodynamic characteristics about pitching airfoils[J]. Acta Aerodynamica Sinica,2008,26(2): 178-185. (in ChineseRAN Jinghong, LIU Ziqiang, BAI Peng. The effect of relative thickness to the dynamic aerodynamic characteristics about pitching airfoils[J]. Acta Aerodynamica Sinica, 2008, 26(2): 178-185. (in Chinese) [14] DEB K,AGRAWAL S,PRATAP A,et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-Ⅱ[M]//Parallel problem solving from nature PPSN VI. Berlin,Germany: Springer,2000: 849-858. [15] 赵鸿华,宋双文,王志凯. 基于NSGA-Ⅱ算法的小弯管冲击冷却多目标优化[J]. 航空动力学报,2024,39(6):20210688. ZHAO Honghua,SONG Shuangwen,WANG Zhikai. Multi-objective optimization of impingement coolingof concave wall based on NSGA-Ⅱ algorithm[J]. Journal of Aerospace Power,2024,39(6):20210688. (in ChineseZHAO Honghua, SONG Shuangwen, WANG Zhikai. Multi-objective optimization of impingement coolingof concave wall based on NSGA-Ⅱ algorithm[J]. Journal of Aerospace Power, 2024, 39(6): 20210688. (in Chinese) [16] 刘远强,李天,白俊强,等. 通用飞机高升力层流翼型优化设计研究[J]. 西北工业大学学报,2017,35(2): 339-347. LIU Yuanqiang,LI Tian,BAI Junqiang,et al. Opotimization design of high-lift laminar airfoil for general aircraft[J]. Journal of Northwestern Polytechnical University,2017,35(2): 339-347. (in ChineseLIU Yuanqiang, LI Tian, BAI Junqiang, et al. Opotimization design of high-lift laminar airfoil for general aircraft[J]. Journal of Northwestern Polytechnical University, 2017, 35(2): 339-347. (in Chinese) [17] 项松,杨凤田,吴江,等. 某型两叶螺旋桨的设计及风洞试验[J]. 飞行力学,2019,37(2): 83-86,91. XIANG Song,YANG Fengtian,WU Jiang,et al. Design and wind tunnel test of a two-blade propeller[J]. Flight Dynamics,2019,37(2): 83-86,91. (in ChineseXIANG Song, YANG Fengtian, WU Jiang, et al. Design and wind tunnel test of a two-blade propeller[J]. Flight Dynamics, 2019, 37(2): 83-86, 91. (in Chinese) [18] 艾延廷,王腾飞,王志,等. 螺旋桨气动噪声数值模拟和实验研究[J]. 机械设计与制造,2018(11): 57-59. AI Yanting,WANG Tengfei,WANG Zhi,et al. Numerical simulation and experimental methods of aerodynamic noise for propeller[J]. Machinery Design & Manufacture,2018(11): 57-59. (in Chinese doi: 10.3969/j.issn.1001-3997.2018.11.015AI Yanting, WANG Tengfei, WANG Zhi, et al. Numerical simulation and experimental methods of aerodynamic noise for propeller[J]. Machinery Design & Manufacture, 2018(11): 57-59. (in Chinese) doi: 10.3969/j.issn.1001-3997.2018.11.015 -