留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

层叠式推力箔片轴承静特性仿真及试验研究

徐科繁 张广辉 韩佳真 黄钟文 吉世伟

徐科繁, 张广辉, 韩佳真, 等. 层叠式推力箔片轴承静特性仿真及试验研究[J]. 航空动力学报, 2024, 39(9):20220672 doi: 10.13224/j.cnki.jasp.20220672
引用本文: 徐科繁, 张广辉, 韩佳真, 等. 层叠式推力箔片轴承静特性仿真及试验研究[J]. 航空动力学报, 2024, 39(9):20220672 doi: 10.13224/j.cnki.jasp.20220672
XU Kefan, ZHANG Guanghui, HAN Jiazhen, et al. Simulation and experimental study on static characteristics of multi-layer thrust foil bearing[J]. Journal of Aerospace Power, 2024, 39(9):20220672 doi: 10.13224/j.cnki.jasp.20220672
Citation: XU Kefan, ZHANG Guanghui, HAN Jiazhen, et al. Simulation and experimental study on static characteristics of multi-layer thrust foil bearing[J]. Journal of Aerospace Power, 2024, 39(9):20220672 doi: 10.13224/j.cnki.jasp.20220672

层叠式推力箔片轴承静特性仿真及试验研究

doi: 10.13224/j.cnki.jasp.20220672
基金项目: 国家科技重大专项(2017-Ⅳ-0008-0045)
详细信息
    作者简介:

    徐科繁(1996-),男,博士生,主要从事气体箔片轴承研究

    通讯作者:

    张广辉(1982-),男,教授、博士生导师,博士,主要从事转子动力学研究。E-mail:zhanggh@hit.edu.cn

  • 中图分类号: V245.3

Simulation and experimental study on static characteristics of multi-layer thrust foil bearing

  • 摘要:

    为阐明层叠式推力箔片轴承的流-固耦合机理,基于有限差分法和厚板单元建立了该轴承数值仿真模型,借助Newton-Raphson法将基于一阶滑移模型的可压缩雷诺方程线性化,基于迭代求解获取了该轴承静特性随工况参数的演变规律,搭建了层叠式推力箔片轴承起飞转速试验台,明确了起飞转速判断依据,数值结果和试验结果吻合较好。研究结果表明:当转速不大于20000 r/min时,考虑滑移边界后轴承承载力普遍下降3%左右,此时应考虑该影响。由于二次楔形效应,小间隙时轴承压力分布呈明显的“双峰”状。轴承间隙内摩擦状态的改变会导致试验数据波动,据此可确定轴承起飞转速。与文献数据和试验数据的对比结果表明,相关数值仿真模型更适用于分析轴承重载情况。

     

  • 图 1  层叠式推力箔片轴承

    Figure 1.  Multi-layer thrust foil bearing

    图 2  初始气膜厚度示意图

    Figure 2.  Initial film thickness distribution.

    图 3  厚板单元示意图

    Figure 3.  Thick plate element

    图 4  计算域及边界条件

    Figure 4.  Computational domain and boundary conditions

    图 5  轴承特性仿真流程图[3]

    Figure 5.  Flow chart of simulation for bearing characteristics[3]

    图 6  最小气膜厚度随承载力的变化曲线

    Figure 6.  Curves of the minimum of film thickness with load capacity

    图 7  网格无关性验证结果

    Figure 7.  Verification results of grid independence

    图 8  转速和间隙对承载力的影响

    Figure 8.  Influence of rotational speed and clearance on bearing capacity

    图 9  不同工况下轴承无量纲压力分布

    Figure 9.  Dimensionless pressure distribution under different working conditions

    图 10  不同工况下轴承无量纲箔片变形量分布

    Figure 10.  Dimensionless foil deformation distribution under different working conditions

    图 11  推力箔片轴承试验台

    Figure 11.  Thrust foil bearing test rig

    图 12  摩擦力矩和轴向载荷数据(Fpre=30 N)

    Figure 12.  Friction torque and axial load data (Fpre=30 N)

    图 13  不同预载荷下的起飞转速试验数据

    Figure 13.  Lift-off speed experimental data under different preloads

    表  1  层叠式箔片轴承的计算参数[18]

    Table  1.   Bearing parameters of multi-layer foil bearing[18]

    参数 数值
    扇形瓦外径R2/mm 21.5
    扇形瓦内径R1/mm 12.0
    扇形瓦块数N 8
    大气压力p0/Pa 101325
    气体动力黏度μ/10−5 (Pa·s) 1.932
    平箔片厚度tf/mm 0.1
    中间板厚度tm/mm 0.12
    支承板高度ts/mm 0.5
    箔片弹性模量E/1011 Pa 2.1
    箔片泊松比ν 0.3
    下载: 导出CSV

    表  2  层叠式箔片轴承的计算参数[19]

    Table  2.   Bearing parameters of multi-layer foil bearing[19]

    参数 数值
    扇形瓦外径R2/mm 57.15
    扇形瓦内径R1/mm 29.75
    扇形瓦块数N 12
    平箔片厚度tf/mm 0.27
    中间板厚度tm/mm 0.12
    支承板高度ts/mm 0.8
    转速Ω/104 (r/min) 5
    推力盘与轴承的间隙hg0/mm 0.01
    下载: 导出CSV
  • [1] HOU Yu,ZHAO Qi,GUO Yu,et al. Application of gas foil bearings in China[J]. Applied Sciences,2021,11(13): 6210. doi: 10.3390/app11136210
    [2] HESHMAT H,WALTON J F,TOMASZEWSKI M J. Demonstration of a turbojet engine using an air foil bearing[R]. ASME Paper GT2005-68404,2005.
    [3] 徐科繁,张广辉,黄钟文,等. 考虑滑移边界的多叶波箔式轴承特性分析[J]. 航空动力学报,2023,38(6): 1457-1466. XU Kefan,ZHANG Guanghui,HUANG Zhongwen,et al. Characteristics analysis of multi-leaf foil bearing with bump-foil support considering slip boundary[J]. Journal of Aerospace Power,2023,38(6): 1457-1466. (in Chinese

    XU Kefan, ZHANG Guanghui, HUANG Zhongwen, et al. Characteristics analysis of multi-leaf foil bearing with bump-foil support considering slip boundary[J]. Journal of Aerospace Power, 2023, 38(6): 1457-1466. (in Chinese)
    [4] PATTNAYAK M R,GANAI P,PANDEY R K,et al. An overview and assessment on aerodynamic journal bearings with important findings and scope for explorations[J]. Tribology International,2022,174: 107778. doi: 10.1016/j.triboint.2022.107778
    [5] ETSION I. Analysis and design of a cantilever-mounted resilient-pad gas-lubricated thrust bearing [R]. NASA TN D - 8221,1976.
    [6] 闫佳佳,刘占生,张广辉,等. 考虑稀薄气体效应的止推箔片轴承静特性分析[J]. 航空动力学报,2016,31(6): 1521-1529. YAN Jiajia,LIU Zhansheng,ZHANG Guanghui,et al. Static characteristics analysis of foil thrust bearing considering the rarefield gas effect[J]. Journal of Aerospace Power,2016,31(6): 1521-1529. (in Chinese

    YAN Jiajia, LIU Zhansheng, ZHANG Guanghui, et al. Static characteristics analysis of foil thrust bearing considering the rarefield gas effect[J]. Journal of Aerospace Power, 2016, 31(6): 1521-1529. (in Chinese)
    [7] IORDANOFF I. Analysis of an aerodynamic compliant foil thrust bearing: method for a rapid design[J]. Journal of Tribology,1999,121(4): 816-822. doi: 10.1115/1.2834140
    [8] LEE D,KIM D. Three-dimensional thermohydrodynamic analyses of Rayleigh step air foil thrust bearing with radially arranged bump foils[J]. Tribology Transactions,2011,54(3): 432-448. doi: 10.1080/10402004.2011.556314
    [9] DYKAS B,BRUCKNER R,DELLACORTE C,et al. Design,fabrication,and performance of foil gas thrust bearings for microturbomachinery applications[J]. Journal of Engineering for Gas Turbines and Power,2009,131(1): 012301. doi: 10.1115/1.2966418
    [10] GUO Yu,HOU Yu,WANG Yu,et al. Numerical analysis of aerodynamic lubricated double-decked protuberant foil thrust bearing[J]. Journal of Advanced Mechanical Design,Systems,and Manufacturing,2019,13(3): JAMDSM0056. doi: 10.1299/jamdsm.2019jamdsm0056
    [11] LEE D,KIM D. Design and performance prediction of hybrid air foil thrust bearings[J]. Journal of Engineering for Gas Turbines and Power,2011,133(4): 042501. doi: 10.1115/1.4002249
    [12] BROCKETT T S,CHINTA M,WEISSERT D H. Compliant foil thrust bearing: US6702463[P]. 2004-03-09.
    [13] SAVILLE M P,GU A L. Foil thrust bearing: US4624583[P]. 1986-11-25.
    [14] LI Changlin,DU Jianjun,YAO Yingxue. Modeling of a multi-layer foil gas thrust bearing and its load carrying mechanism study[J]. Tribology International,2017,114: 172-185. doi: 10.1016/j.triboint.2017.03.037
    [15] LI Changlin,DU Jianjun,LI Jie,et al. Investigations on the load capacity of multilayer foil thrust bearing based on an updated complete model[J]. Journal of Tribology,2023,145(2): 021202. doi: 10.1115/1.4055130
    [16] 胡小强,吕鹏,冯凯,等. 叠片式箔片气体动压推力轴承的静动态特性[J]. 航空动力学报,2018,33(12): 3022-3031. HU Xiaoqiang,LÜ Peng,FENG Kai,et al. Static and dynamic performance of laminated gas foil thrust bearing[J]. Journal of Aerospace Power,2018,33(12): 3022-3031. (in Chinese

    HU Xiaoqiang, LÜ Peng, FENG Kai, et al. Static and dynamic performance of laminated gas foil thrust bearing[J]. Journal of Aerospace Power, 2018, 33(12): 3022-3031. (in Chinese)
    [17] 李映宏,胡小强,张凯,等. 叠片式气体箔片推力轴承热特性分析[J]. 摩擦学学报,2019,39(3): 295-303. LI Yinghong,HU Xiaoqiang,ZHANG Kai,et al. A thermohydrodynamic analysis of laminated gas foil thrust bearing[J]. Tribology,2019,39(3): 295-303. (in Chinese

    LI Yinghong, HU Xiaoqiang, ZHANG Kai, et al. A thermohydrodynamic analysis of laminated gas foil thrust bearing[J]. Tribology, 2019, 39(3): 295-303. (in Chinese)
    [18] 张镜洋,孟光荣,陈蓓曦,等. 叠层式箔片动压气体推力轴承承载特性[J]. 航空动力学报,2023,38(6): 1423-1431. ZHANG Jingyang,MENG Guangrong,CHEN Beixi,et al. Loading capacity of multi-layer foil gas thrust bearing[J]. Journal of Aerospace Power,2023,38(6): 1423-1431. (in Chinese

    ZHANG Jingyang, MENG Guangrong, CHEN Beixi, et al. Loading capacity of multi-layer foil gas thrust bearing[J]. Journal of Aerospace Power, 2023, 38(6): 1423-1431. (in Chinese)
    [19] 黄钟文. 基于多重网格法的表面微织构气体箔片轴承特性研究[D]. 哈尔滨: 哈尔滨工业大学,2019. HUANG Zhongwen. Research on micro-textured gas foil bearing characteristics based on multigrid method[D]. Harbin: Harbin Institute of Technology,2019. (in Chinese

    HUANG Zhongwen. Research on micro-textured gas foil bearing characteristics based on multigrid method[D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese)
    [20] 徐方程,刘占生,张广辉,等. 气体止推箔片轴承试验台设计及试验[J]. 航空动力学报,2016,31(9): 2298-2304. XU Fangcheng,LIU Zhansheng,ZHANG Guanghui,et al. Test rig design and experiment of gas thrust foil bearing[J]. Journal of Aerospace Power,2016,31(9): 2298-2304. (in Chinese

    XU Fangcheng, LIU Zhansheng, ZHANG Guanghui, et al. Test rig design and experiment of gas thrust foil bearing[J]. Journal of Aerospace Power, 2016, 31(9): 2298-2304. (in Chinese)
    [21] PETYT M. Introduction to finite element vibration analysis[M]. 2nd ed. Cambridge , England: Cambridge University Press,2010.
    [22] WANG Nenzi,CHANG C. An application of Newton’s method to the lubrication analysis of air-lubricated bearings[J]. Tribology Transactions,1999,42(2): 419-424. doi: 10.1080/10402009908982237
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  80
  • HTML浏览量:  42
  • PDF量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-08
  • 网络出版日期:  2023-10-27

目录

    /

    返回文章
    返回