留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涡轮级间燃烧压力恢复系数对涡扇发动机的性能影响仿真

肖阳 龚建波 张坤 李丹 汤东

肖阳, 龚建波, 张坤, 等. 涡轮级间燃烧压力恢复系数对涡扇发动机的性能影响仿真[J]. 航空动力学报, 2023, 39(X):20220679 doi: 10.13224/j.cnki.jasp.20220679
引用本文: 肖阳, 龚建波, 张坤, 等. 涡轮级间燃烧压力恢复系数对涡扇发动机的性能影响仿真[J]. 航空动力学报, 2023, 39(X):20220679 doi: 10.13224/j.cnki.jasp.20220679
XIAO Yang, GONG Jianbo, ZHANG Kun, et al. Simulation of the effect of interstage turbine burner pressure recovery factor on turbofan engine performance[J]. Journal of Aerospace Power, 2023, 39(X):20220679 doi: 10.13224/j.cnki.jasp.20220679
Citation: XIAO Yang, GONG Jianbo, ZHANG Kun, et al. Simulation of the effect of interstage turbine burner pressure recovery factor on turbofan engine performance[J]. Journal of Aerospace Power, 2023, 39(X):20220679 doi: 10.13224/j.cnki.jasp.20220679

涡轮级间燃烧压力恢复系数对涡扇发动机的性能影响仿真

doi: 10.13224/j.cnki.jasp.20220679
详细信息
    作者简介:

    肖阳(1996-),男,硕士生,主要研究增设级间燃烧对航空发动机总体性能的影响。E-mail:2277154676@qq.com

    通讯作者:

    龚建波(1980-),男,正高级工程师、硕士生导师,博士,主要从事航空发动机总体设计及系统集成研究。E-mail:gongjianbo@iet.cn

  • 中图分类号: V235.12

Simulation of the effect of interstage turbine burner pressure recovery factor on turbofan engine performance

  • 摘要:

    为了分析级间燃烧室的压力恢复系数在不同飞行状态下,对中等涵道比带级间燃烧室混合排气涡扇发动机净推力和单位燃油消耗率的影响,基于原未带级间燃烧室发动机的循环参数,增设了级间燃烧,建立了部件级稳态性能计算模型,仿真结果表明了:当涡扇发动机在飞行高度为5 km,飞行马赫数为0.8,级间燃烧室压力恢复系数由0.92变为0.8时,单位燃油消耗率相对增加12.2%;而当飞行高度为5 km,飞行马赫数为1.8,级间燃烧室压力恢复系数由0.92变为0.8时,单位燃油消耗率相对增加20.3%。所用的计算程序在进行模型仿真时,级间燃烧室压力恢复系数基本不变,而在现有的级间燃烧室研究中表明:级间燃烧室压力恢复系数会随着飞行马赫数的增加而变大,当飞行马赫数由0.8变为1.8时,级间燃烧室压力恢复系数会相对增大2%以上,因此对计算结果采用了变级间燃烧室压力恢复系数的视角,研究了其对发动机性能的影响。

     

  • 图 1  中等涵道比混合排气涡扇发动机截面符号

    Figure 1.  Cross section symbol of mixed exhaust turbofan engine with medium bypass ratio

    图 2  设计点处,性能随$ {T}_{{\mathrm{t}}451} $的变化

    Figure 2.  Performance varies with $ {T}_{{\mathrm{t}}451} $ at the design point

    图 3  不同进口流速下,级间燃烧室流场分布以及压力恢复系数值

    Figure 3.  Flow field distribution between interstage turbine burner and pressure recovery factor at different inlet velocities

    图 4  飞行高度H=5 km时,$ {\sigma }_{{\mathrm{b,itb}}} $sfc的影响

    Figure 4.  Impact of $ {\sigma }_{{\mathrm{b,itb}}} $ on the sfc at flight height H=5 km

    图 5  飞行高度H=5 km时,$ {\sigma }_{\mathrm{b,itb}} $Fn的影响

    Figure 5.  Impact of $ {\sigma }_{\mathrm{b,itb}} $ on the Fn at flight height H=5 kmi

    图 6  飞行高度H=10 km时,$ {\sigma }_{\mathrm{b,itb}} $sfc的影响

    Figure 6.  Impact of $ {\sigma }_{\mathrm{b,itb}} $ on the sfc at flight height H=10 km

    图 7  飞行高度H=10 km时,$ {\sigma }_{\mathrm{b,itb}} $Fn的影响

    Figure 7.  Impact of $ {\sigma }_{\mathrm{b,itb}} $ on the Fn at flight height H=10 km

    图 8  级间燃烧室$ {\sigma }_{\mathrm{b,itb}} $$ {T}_{{\mathrm{t}}4} $的影响

    Figure 8.  Impact of $ {\sigma }_{\mathrm{b,itb}} $ on $ {T}_{{\mathrm{t}}4} $ in interstage turbine burner

  • [1] GONG Hao,WANG Zhanxue. Effects of intercooling and recuperation on turbofan engine performance[C]//Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology. Piscataway,US: IEEE,2011: 2482-2485.
    [2] KYPRIANIDIS K G,GRÖNSTEDT T,OGAJI S O T,et al. Assessment of future aero-engine designs with intercooled and intercooled recuperated cores[J]. Journal of Engineering for Gas Turbines and Power,2011,133(1): 11701. doi: 10.1115/1.4001982
    [3] BOGGIA S,RÜD K. Intercooled recuperated gas turbine engine concept[R]. AIAA 2005-4192,2005.
    [4] 尚守堂,程明,刘殿春,等. 涡轮级间燃烧室技术的研究现状与发展趋势[J]. 航空科学技术,2011,22(4): 79-82. SHANG Shoutang,CHENG Ming,LIU Dianchun,et al. The status and direction of inter-stage turbine burner technology[J]. Aeronautical Science & Technology,2011,22(4): 79-82. (in Chinese doi: 10.3969/j.issn.1007-5453.2011.04.023

    SHANG Shoutang, CHENG Ming, LIU Dianchun, et al. The status and direction of inter-stage turbine burner technology[J]. Aeronautical Science & Technology, 2011, 22(4): 79-82. (in Chinese) doi: 10.3969/j.issn.1007-5453.2011.04.023
    [5] CHIU Y T,KING P,O'BRIEN W. A performance study of a super-cruise engine with isothermal combustion inside the turbine[R]. AIAA 2005-4197,2005.
    [6] SIRIGNANO W,DELPLANQUE J P,LIU F,et al. Selected challenges in jet and rocket engine combustion research[R]. AIAA 1997-2701,1997.
    [7] SIRIGNANO W A,LIU F. Performance increases for gas-turbine engines through combustion inside the turbine[J]. Journal of Propulsion and Power,1999,15(1): 111-118. doi: 10.2514/2.5398
    [8] LIEW K H,URIP E,YANG S L. Parametric cycle analysis of a turbofan engine with an interstage turbine burner[J]. Journal of Propulsion and Power,2005,21(3): 546-551. doi: 10.2514/1.2546
    [9] LIEW K H,URIP E,YANG S L,et al. Performance cycle analysis of turbofan engine with interstage turbine burner[J]. Journal of Propulsion and Power,2006,22(2): 411-416. doi: 10.2514/1.13394
    [10] 成本林,周文祥,张堃元. 带级间燃烧的涡轴发动机性能仿真[J]. 航空动力学报,2011,26(11): 2543-2548. CHENG Benlin,ZHOU Wenxiang,ZHANG Kunyuan. Performance simulation of turboshaft engines with interstage turbine burner[J]. Journal of Aerospace Power,2011,26(11): 2543-2548. (in Chinese doi: 10.13224/j.cnki.jasp.2011.11.035

    CHENG Benlin, ZHOU Wenxiang, ZHANG Kunyuan. Performance simulation of turboshaft engines with interstage turbine burner[J]. Journal of Aerospace Power, 2011, 26(11): 2543-2548. (in Chinese) doi: 10.13224/j.cnki.jasp.2011.11.035
    [11] 骆广琦,郑九洲,张发启. 多级涡轮级间燃烧室发动机与常规涡轮喷气发动机性能对比研究[J]. 弹箭与制导学报,2009,29(1): 162-165. LUO Guangqi,ZHENG Jiuzhou,ZHANG Faqi. Multiple turbine inter-stage burners turbofan engine performance research[J]. Journal of Projectiles,Rockets,Missiles and Guidance,2009,29(1): 162-165. (in Chinese doi: 10.3969/j.issn.1673-9728.2009.01.047

    LUO Guangqi, ZHENG Jiuzhou, ZHANG Faqi. Multiple turbine inter-stage burners turbofan engine performance research[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(1): 162-165. (in Chinese) doi: 10.3969/j.issn.1673-9728.2009.01.047
    [12] 毛艳辉,杨金虎,刘存喜,等. 高温升燃烧室与双燃烧室发动机性能对比分析[J]. 航空动力学报,2013,28(3): 673-680. MAO Yanhui,YANG Jinhu,LIU Cunxi,et al. Performance comparison and analysis of high temperature rise combustor engine and two-combustor engine[J]. Journal of Aerospace Power,2013,28(3): 673-680. (in Chinese doi: 10.13224/j.cnki.jasp.2013.03.021

    MAO Yanhui, YANG Jinhu, LIU Cunxi, et al. Performance comparison and analysis of high temperature rise combustor engine and two-combustor engine[J]. Journal of Aerospace Power, 2013, 28(3): 673-680. (in Chinese) doi: 10.13224/j.cnki.jasp.2013.03.021
    [13] ANDRIANI R,GHEZZI U,ANTONI F L D. Jet engines with heat addition during expansion - A performance analysis[R]. AIAA 1999-744,1999.
    [14] CHEN G,HOFFMAN M,DAVIS R. Improvements in gas-turbine performance through the use of multiple turbine inter-stage burners[R]. AIAA 2004-374,2004.
    [15] EL-MAKSOUD R M A. Gas turbine with heating during the expansion in the stator blades[J]. Energy Conversion and Management,2014,78: 219-224. doi: 10.1016/j.enconman.2013.10.054
    [16] 潘旭,葛宁. 带涡轮燃烧室的涡扇发动机设计点性能分析[J]. 燃气涡轮试验与研究,2007,20(3): 34-38. PAN Xu,GE Ning. Parametric (on-design) analysis for a separate-exhaust turbofan engine with interstage turbine burner[J]. Gas Turbine Experiment and Research,2007,20(3): 34-38. (in Chinese doi: 10.3969/j.issn.1672-2620.2007.03.008

    PAN Xu, GE Ning. Parametric (on-design) analysis for a separate-exhaust turbofan engine with interstage turbine burner[J]. Gas Turbine Experiment and Research, 2007, 20(3): 34-38. (in Chinese) doi: 10.3969/j.issn.1672-2620.2007.03.008
    [17] LI Yongyi,ZHANG Guoqiang,WANG Ligang,et al. Part-load performance analysis of a combined cycle with intermediate recuperated gas turbine[J]. Energy Conversion and Management,2020,205: 112346. doi: 10.1016/j.enconman.2019.112346
    [18] KIAEE M,TOUSI A M,TOUDEFALLAH M. Performance adaptation of a 100 kW microturbine[J]. Applied Thermal Engineering,2015,87: 234-250. doi: 10.1016/j.applthermaleng.2015.04.075
    [19] CHEN Qiang,HAN Wei,ZHENG Jianjiao,et al. The exergy and energy level analysis of a combined cooling,heating and power system driven by a small scale gas turbine at off design condition[J]. Applied Thermal Engineering,2014,66(1/2): 590-602.
    [20] 骆广琦,孟龙,刘琨. 不同叶片径向凹槽结构的超紧凑型涡轮级间燃烧室数值模拟[J]. 空军工程大学学报(自然科学版),2012,13(3): 6-10. LUO Guangqi,MENG Long,LIU Kun. Numerical investigation of interstage-turbine burner (ITB) with different radial vane cavity shapes[J]. Journal of Air Force Engineering University (Natural Science Edition),2012,13(3): 6-10. (in Chinese

    LUO Guangqi, MENG Long, LIU Kun. Numerical investigation of interstage-turbine burner (ITB) with different radial vane cavity shapes[J]. Journal of Air Force Engineering University (Natural Science Edition), 2012, 13(3): 6-10. (in Chinese)
    [21] 骆广琦,曾剑臣,孟龙,等. 双凹腔超紧凑型涡轮级间燃烧室数值模拟[J]. 弹箭与制导学报,2016,36(5): 89-93. LUO Guangqi,ZENG Jianchen,MENG Long,et al. Numerical simulation of an ultra-compact interstage turbine burner with double concave cavity[J]. Journal of Projectiles,Rockets,Missiles and Guidance,2016,36(5): 89-93. (in Chinese

    LUO Guangqi, ZENG Jianchen, MENG Long, et al. Numerical simulation of an ultra-compact interstage turbine burner with double concave cavity[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2016, 36(5): 89-93. (in Chinese)
    [22] 廉筱纯,吴虎. 航空发动机原理[M]. 西安: 西北工业大学出版社,2005.
    [23] CHAPPELL M S, COCKSHUTT E P. Gas turbine cycle calculations: thermodynamic data tables for air and combustion products for three systems of units[R]. Birmingham,Cananda:National Research Council Aeronautical Report LR 517, 1969.
    [24] 朱行健,王雪瑜. 燃气轮机工作原理及性能[M]. 北京: 科学出版社,1992.
  • 加载中
图(8)
计量
  • 文章访问数:  42
  • HTML浏览量:  22
  • PDF量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-13
  • 网络出版日期:  2023-11-20

目录

    /

    返回文章
    返回