留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

VCE身份证动态模型部件特性快速自动修正方法

邹泽龙 黄金泉 周鑫 周文祥 鲁峰

邹泽龙, 黄金泉, 周鑫, 等. VCE身份证动态模型部件特性快速自动修正方法[J]. 航空动力学报, 2024, 39(9):20220680 doi: 10.13224/j.cnki.jasp.20220680
引用本文: 邹泽龙, 黄金泉, 周鑫, 等. VCE身份证动态模型部件特性快速自动修正方法[J]. 航空动力学报, 2024, 39(9):20220680 doi: 10.13224/j.cnki.jasp.20220680
ZOU Zelong, HUANG Jinquan, ZHOU Xin, et al. Fast automatic correction method for component characteristics of the identification dynamic model of VCE[J]. Journal of Aerospace Power, 2024, 39(9):20220680 doi: 10.13224/j.cnki.jasp.20220680
Citation: ZOU Zelong, HUANG Jinquan, ZHOU Xin, et al. Fast automatic correction method for component characteristics of the identification dynamic model of VCE[J]. Journal of Aerospace Power, 2024, 39(9):20220680 doi: 10.13224/j.cnki.jasp.20220680

VCE身份证动态模型部件特性快速自动修正方法

doi: 10.13224/j.cnki.jasp.20220680
基金项目: 中央高校基本科研业务费项目(NP2022418)
详细信息
    作者简介:

    邹泽龙(1997-),男,博士生,主要从事航空发动机模型修正和健康监测研究

    通讯作者:

    鲁峰(1981-),男,教授,博士,主要从事航空发动机建模、控制和故障诊断融合方法的研究。E-mail:lufengnuaa@126.com

  • 中图分类号: V233.7

Fast automatic correction method for component characteristics of the identification dynamic model of VCE

  • 摘要:

    为实现模型部件特性快速自动修正的工程需求,提出一种针对身份证模型部件特性的增强型自动修正策略,以稳态试车数据为输入,依据可测传感器组合,分析选取合适的特性修正系数组合,并耦合个体试车数据对共同工作方程进行设计,利用多点修模的双环策略快速自动修正部件特性,实现某型变循环发动机身份证模型的快速自动修正。采取逆流路扰动及Newton-Raphson迭代阻尼系数自调整法和特性图外插保护逻辑等方法提高算法的运行速率和稳定性。仿真结果表明:修正后模型输出最大误差小于0.1%,在2.10 GHz处理器的计算机上单、双涵道模式与常规部件级模型相比,耗时减少98.6%以上,所修正后模型可用于控制律设计以及为确定发动机当前真实状态提供参考。

     

  • 图 1  VCE气路部件图

    Figure 1.  Gas path components of VCE

    图 2  模型输出变化均值图

    Figure 2.  Averages of model output change

    图 3  双层NR迭代结构图

    Figure 3.  Structure of double-loop NR method

    图 4  单层NR迭代结构图

    Figure 4.  Structure of single-loop NR method

    图 5  基于NR迭代法的多点模型自动修正方法

    Figure 5.  Automatic multi-point correction method based on NR method

    图 6  压气机压比-流量局部特性图

    Figure 6.  Part pressure-flow characteristic map of compressor

    图 7  旋转部件耗时占比图

    Figure 7.  Time consumption proportion of rotating parts

    图 8  待求解参数在气路计算中参与工作位置图

    Figure 8.  Working position of the parameters to be solved in the gas path calculation

    图 9  NR迭代阻尼系数自调整法调整量变化图

    Figure 9.  Change of self adjustment of NR method damping coefficient

    图 10  修正前后压缩部件部分特性图比较图

    Figure 10.  Comparison of partial characteristic maps of compressor before and after correction

    图 11  单涵模式特性图修正后共同工作点分布图

    Figure 11.  Distribution of cooperating points after correction of characteristic maps of single culvert mode

    图 12  双涵模式特性图修正后共同工作点分布图

    Figure 12.  Distribution of cooperating points after correction of characteristic maps of double culvert mode

    图 13  常规双层NR不同外层收敛精度迭代耗时比较图

    Figure 13.  Time-consuming comparison of conventional double-loop NR method with different outer convergence accuracy

    图 14  3种方法耗时比较图

    Figure 14.  Time consuming comparison of three methods

    表  1  特性修正系数编号表

    Table  1.   Identifiers of characteristic correction coefficients

    编号 物理意义 符号
    1 风扇效率修正系数 h1
    2 风扇流量修正系数 h2
    3 风扇压比修正系数 h3
    4 CDFS效率修正系数 h4
    5 CDFS流量修正系数 h5
    6 CDFS压比修正系数 h6
    7 压气机效率修正系数 h7
    8 压气机流量修正系数 h8
    9 压气机压比修正系数 h9
    10 高压涡轮效率修正系数 h10
    11 高压涡轮流量修正系数 h11
    12 高压涡轮压比修正系数 h12
    13 低压涡轮效率修正系数 h13
    14 低压涡轮流量修正系数 h14
    15 低压涡轮压比修正系数 h15
    下载: 导出CSV

    表  2  VCE模型各主要部件耗时

    Table  2.   Time consumption of main components of VCE

    部件 耗时/ms 占比/% 部件 耗时/ms 占比/%
    进气道 19 0.2 高压涡轮 1417 14.83
    风扇 1760 18.43 低压涡轮 1623 16.99
    CDFS 1762 18.45 外涵道 184 1.93
    压气机 2164 22.65 尾喷管 581 6.08
    燃烧室 42 0.44
    下载: 导出CSV

    表  3  基于双层NR迭代法模型修正后输出平均误差表

    Table  3.   Average output error after model correction based on double-loop NR method %

    发动机模式 外层收敛精度 nl nh T21 p21 T24 p24 T3 p3 T5 p5
    单涵 0.1 0.010 0.036 0.033 0.012 0.020 0.049 0.031 0.082 0.117 0.096
    0.5 0.048 0.178 0.161 0.061 0.101 0.241 0.156 0.400 0.569 0.472
    1.0 0.094 0.348 0.306 0.116 0.182 0.475 0.279 0.787 1.112 0.928
    2.0 0.177 0.679 0.602 0.235 0.360 0.924 0.551 1.533 2.152 1.811
    双涵 0.1 0.048 0.035 0.005 0.033 0.001 0.065 0.014 0.092 0.140 0.089
    0.5 0.214 0.170 0.030 0.130 0.012 0.285 0.086 0.404 0.776 0.468
    1.0 0.418 0.358 0.062 0.283 0.023 0.625 0.173 0.878 1.475 0.929
    2.0 0.971 0.724 0.124 0.616 0.029 1.330 0.323 1.822 2.608 1.749
    下载: 导出CSV

    表  4  基于单层NR迭代法模型修正后输出平均误差表

    Table  4.   Average output error after model correction based on single-loop NR method %

    发动机模式 nl nh T21 p21 T24 p24 T3 p3 T5 p5
    单涵 0 0 0.001 0 0.001 0 0.003 0 0.051 0
    双涵 0 0 0.008 0 0.011 0 0.020 0 0.088 0
    下载: 导出CSV

    表  5  风扇部件部分特性修正系数

    Table  5.   Partial characteristic correction coefficients of fan components

    转速 流量修正系数 效率修正系数
    0.70 0.947 0.951
    0.80 0.973 0.969
    0.90 0.981 0.980
    0.95 0.981 0.980
    1.00 0.981 0.980
    下载: 导出CSV

    表  6  增强型与常规自动修正双环策略耗时比较表

    Table  6.   Comparison of time consumption between enhanced and conventional automatic correction double-loop strategies

    修正方法 发动机模式 外层收敛精度 耗时/s
    身份证模型自动
    修正双环策略
    单涵 0.001 0.08
    双涵 0.001 0.11
    增强型身份证模型
    自动修正双环策略
    单涵 0.001 0.05
    双涵 0.001 0.07
    下载: 导出CSV
  • [1] 唐海龙. 面向对象的航空发动机性能仿真系统及其应用[D]. 北京: 北京航空航天大学,2000. TANG Hailong. Object-oriented aero-engine performance simulation system and its application[D]. Beijing: Beihang University,2000. (in Chinese

    TANG Hailong. Object-oriented aero-engine performance simulation system and its application[D]. Beijing: Beihang University, 2000. (in Chinese)
    [2] 周红,王占学,刘增文,等. 双外涵变循环发动机可变几何特性研究[J]. 航空学报,2014,35(8): 2126-2135. ZHOU Hong,WANG Zhanxue,LIU Zengwen,et al. Variable geometry characteristics research of double bypass variable cycle engine[J]. Acta Aeronautica et Astronautica Sinica,2014,35(8): 2126-2135. (in Chinese

    ZHOU Hong, WANG Zhanxue, LIU Zengwen, et al. Variable geometry characteristics research of double bypass variable cycle engine[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8): 2126-2135. (in Chinese)
    [3] DU Xian,GUO Yingqing,SUN Hao. An adaptive model predictive controller for turbofan engines[J]. American Journal of Engineering Research,2015,4(12): 170-176.
    [4] 郑铁军,王曦,罗秀芹,等. 建立航空发动机状态空间模型的修正方法[J]. 推进技术,2005,26(1): 46-49. ZHENG Tiejun,WANG Xi,LUO Xiuqin,et al. Modified method of establishing the state space model of aeroengine[J]. Journal of Propulsion Technology,2005,26(1): 46-49. (in Chinese

    ZHENG Tiejun, WANG Xi, LUO Xiuqin, et al. Modified method of establishing the state space model of aeroengine[J]. Journal of Propulsion Technology, 2005, 26(1): 46-49. (in Chinese)
    [5] KURZKE J. How to get component maps for aircraft gas turbine performance calculations[R]. ASME Paper 96-GT-164,1996.
    [6] 贾琳渊,程荣辉,张志舒,等. 研发阶段涡扇发动机模型自适应方法[J]. 推进技术,2020,41(9): 1935-1945. JIA Linyuan,CHENG Ronghui,ZHANG Zhishu,et al. Adaptive modelling for turbofan engine in development stage[J]. Journal of Propulsion Technology,2020,41(9): 1935-1945. (in Chinese

    JIA Linyuan, CHENG Ronghui, ZHANG Zhishu, et al. Adaptive modelling for turbofan engine in development stage[J]. Journal of Propulsion Technology, 2020, 41(9): 1935-1945. (in Chinese)
    [7] 周文祥. 航空发动机及控制系统建模与面向对象的仿真研究[D]. 南京: 南京航空航天大学,2006. ZHOU Wenxiang. Research on object-oriented modeling and simulation for aeroengine and control system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2006. (in Chinese

    ZHOU Wenxiang. Research on object-oriented modeling and simulation for aeroengine and control system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006. (in Chinese)
    [8] 姚华. 航空发动机全权限数字电子控制系统[M]. 北京: 航空工业出版社,2014: 22-32.
    [9] 俞明帅. 航空发动机模型组态与修正技术研究[D]. 南京: 南京航空航天大学,2012. YU Mingshuai. Research on configuration and correction technology for aero-engines modeling[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2012. (in Chinese

    YU Mingshuai. Research on configuration and correction technology for aero-engines modeling[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese)
    [10] 钟文城,汪勇,宋劼,等. 一种面向航空发动机数学模型的新型修正方法[J]. 航空动力学报, 2023, 38(11):2776-2784. ZHONG Wencheng,WANG Yong,SONG Jie,et al. A new correction method for aero-engine mathematical model[J]. Journal of Aerospace Power, 2023, 38(11):2776-2784.

    ZHONG Wencheng, WANG Yong, SONG Jie, et al. A new correction method for aero-engine mathematical model[J]. Journal of Aerospace Power, 2023, 38(11): 2776-2784.
    [11] 郑斐华. 基于系统辨识的航空发动机建模研究[D]. 北京: 中国科学院大学,2018. ZHENG Feihua. Aeroengine modeling research based on system identification[D]. Beijing: Chinese Academy of Sciences,2018. (in Chinese

    ZHENG Feihua. Aeroengine modeling research based on system identification[D]. Beijing: Chinese Academy of Sciences, 2018. (in Chinese)
    [12] 潘鹏飞. 高精度航空发动机机载自适应实时模型研究[D]. 南京: 南京航空航天大学,2014. PAN Pengfei. Research on high-accuracy on-board real-time adaptive model of aero-engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2014. (in Chinese

    PAN Pengfei. Research on high-accuracy on-board real-time adaptive model of aero-engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014. (in Chinese)
    [13] LI Y G,ABDUL GHAFIR M F,WANG L,et al. Nonlinear multiple points gas turbine off-design performance adaptation using a genetic algorithm[J]. Journal of Engineering for Gas Turbines and Power,2011,133(7): 42-50.
    [14] TSOUTSANIS E,MESKIN N,BENAMMAR M,et al. A component map tuning method for performance prediction and diagnostics of gas turbine compressors[J]. Applied Energy,2014,135: 572-585.
    [15] TSOUTSANIS E,MESKIN N,BENAMMAR M,et al. Transient gas turbine performance diagnostics through nonlinear adaptation of compressor and turbine maps[J]. Journal of Engineering for Gas Turbines and Power,2015,137(9): 091201.
    [16] 王军,隋岩峰. 整机条件下涡扇发动机部件特征参数辨识[J]. 航空动力学报,2013,28(3): 666-672. WANG Jun,SUI Yanfeng. Identification of component characteristic parameter for whole turbofan engine[J]. Journal of Aerospace Power,2013,28(3): 666-672. (in Chinese

    WANG Jun, SUI Yanfeng. Identification of component characteristic parameter for whole turbofan engine[J]. Journal of Aerospace Power, 2013, 28(3): 666-672. (in Chinese)
    [17] VISSER W P J,KOGENHOP O,OOSTVEEN M. A generic approach for gas turbine adaptive modeling[J]. Journal of Engineering for Gas Turbines and Power,2006,128(1): 13-19.
    [18] 潘阳. 涡轴发动机控制系统传感器故障诊断与容错控制[D]. 南京: 南京航空航天大学,2016. PAN Yang. Research on turbo-shaft engine control system sensor fault diagnosis and fault tolerant control[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2016. (in Chinese

    PAN Yang. Research on turbo-shaft engine control system sensor fault diagnosis and fault tolerant control[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese)
    [19] 陈玉春,徐思远,屠秋野,等. 求解航空发动机非线性方程组的变步长牛顿法[J]. 航空计算技术,2009,39(1): 39-41,44. CHEN Yuchun,XU Siyuan,TU Qiuye,et al. Variable step Newton method for solving the nonlinear equations of aero turbine engines[J]. Aeronautical Computing Technique,2009,39(1): 39-41,44. (in Chinese

    CHEN Yuchun, XU Siyuan, TU Qiuye, et al. Variable step Newton method for solving the nonlinear equations of aero turbine engines[J]. Aeronautical Computing Technique, 2009, 39(1): 39-41, 44. (in Chinese)
    [20] 段守付,樊思齐,卢燕. 航空发动机自适应建模技术研究[J]. 航空动力学报,1999,14(4): 440-442,457. DUAN Shoufu,FAN Siqi,LU Yan. Adaptive modelling technique for aeroengine[J]. Journal of Aerospace Power,1999,14(4): 440-442,457. (in Chinese

    DUAN Shoufu, FAN Siqi, LU Yan. Adaptive modelling technique for aeroengine[J]. Journal of Aerospace Power, 1999, 14(4): 440-442, 457. (in Chinese)
    [21] LU Feng,HUANG Jinquan,JI Chunsheng,et al. Gas path on-line fault diagnostics using a nonlinear integrated model for gas turbine engines[J]. International Journal of Turbo & Jet-Engines,2014,31(3): 261-275.
    [22] 陆军,郭迎清,张书刚. 基于改进混合卡尔曼滤波器的航空发动机机载自适应模型[J]. 航空动力学报,2011,26(11): 2593-2600. LU Jun,GUO Yingqing,ZHANG Shugang. Aeroengine on-board adaptive model based on improved hybrid Kalman filter[J]. Journal of Aerospace Power,2011,26(11): 2593-2600. (in Chinese

    LU Jun, GUO Yingqing, ZHANG Shugang. Aeroengine on-board adaptive model based on improved hybrid Kalman filter[J]. Journal of Aerospace Power, 2011, 26(11): 2593-2600. (in Chinese)
    [23] LI Y G,PILIDIS P,NEWBY M A. An adaptation approach for gas turbine design-point performance simulation[J]. Journal of Engineering for Gas Turbines and Power,2006,128(4): 789-795.
    [24] 程都. 基于神经网络的航空发动机模型自适应修正[D]. 辽宁 大连: 大连理工大学,2019. CHENG Du. Adaptive correction of aeroengine model based on neural network[D]. Dalian,Liaoning: Dalian University of Technology,2019. (in Chinese

    CHENG Du. Adaptive correction of aeroengine model based on neural network[D]. Dalian, Liaoning: Dalian University of Technology, 2019. (in Chinese)
    [25] 鲁峰,黄金泉,仇小杰,等. 基于信息熵融合提取特征的发动机气路分析[J]. 仪器仪表学报,2012,33(1): 13-19. LU Feng,HUANG Jinquan,QIU Xiaojie,et al. Feature extraction based on information entropy fusion for turbo-shaft engine gas-path analysis[J]. Chinese Journal of Scientific Instrument,2012,33(1): 13-19. (in Chinese

    LU Feng, HUANG Jinquan, QIU Xiaojie, et al. Feature extraction based on information entropy fusion for turbo-shaft engine gas-path analysis[J]. Chinese Journal of Scientific Instrument, 2012, 33(1): 13-19. (in Chinese)
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  86
  • HTML浏览量:  51
  • PDF量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-13
  • 网络出版日期:  2023-11-20

目录

    /

    返回文章
    返回