留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应Kriging的中介机匣结构可靠性分析

邸昊源 李洪双

邸昊源, 李洪双. 基于自适应Kriging的中介机匣结构可靠性分析[J]. 航空动力学报, 2024, 39(9):20220707 doi: 10.13224/j.cnki.jasp.20220707
引用本文: 邸昊源, 李洪双. 基于自适应Kriging的中介机匣结构可靠性分析[J]. 航空动力学报, 2024, 39(9):20220707 doi: 10.13224/j.cnki.jasp.20220707
DI Haoyuan, LI Hongshuang. Reliability analysis of intermediate casing based on adaptive Kriging[J]. Journal of Aerospace Power, 2024, 39(9):20220707 doi: 10.13224/j.cnki.jasp.20220707
Citation: DI Haoyuan, LI Hongshuang. Reliability analysis of intermediate casing based on adaptive Kriging[J]. Journal of Aerospace Power, 2024, 39(9):20220707 doi: 10.13224/j.cnki.jasp.20220707

基于自适应Kriging的中介机匣结构可靠性分析

doi: 10.13224/j.cnki.jasp.20220707
基金项目: 江苏高校优势学科建设工程资助
详细信息
    作者简介:

    邸昊源(1998-),男,博士生,主要从事结构可靠性设计研究。E-mail:dihy516@nuaa.edu.cn

    通讯作者:

    李洪双(1978-),男,教授,博士,主要从事飞行器结构可靠性设计研究。E-mail:hongshuangli@nuaa.edu.cn

  • 中图分类号: V232.6

Reliability analysis of intermediate casing based on adaptive Kriging

  • 摘要:

    为了探究中介机匣在多失效模式下的结构可靠性分析方法,建立了参数化有限元模型进行确定性分析。考虑航空发动机中介机匣的材料性能、几何参数及外部载荷的不确定性,对中介机匣两种最典型失效模式:静强度失效以及刚度失效建立极限状态函数。通过构造两失效模式下的自适应Kriging(adaptive Kriging,AK)模型并结合广义子集模拟(generalized subset simulation,GSS)方法评估中介机匣结构失效概率,并基于Copula函数理论对中介机匣失效模式的相关性进行建模,明确两失效模式之间的相互影响,并与AK-GSS方法计算结果进行对比。结果表明:中介机匣结构系统失效概率在10−6量级;相较于传统方法,AK-GSS方法求解中介机匣结构失效概率时计算时长缩减了87.7%且几乎未损失计算精度。除此之外,考虑中介机匣两失效模式相关时AK-GSS方法依旧具有高精度。

     

  • 图 1  中介机匣结构

    Figure 1.  Intermediate casing structure

    图 2  中介机匣有限元模型

    Figure 2.  Intermediate casing finite element model

    图 3  中介机匣Mises应力云图

    Figure 3.  Mises stress contour of intermediate casing

    图 4  中介机匣径向位移云图

    Figure 4.  Radial displacement contour of intermediate casing

    图 5  Python参数化建模流程

    Figure 5.  Parametric modeling process based on Python

    图 6  自适应Kriging模型构建流程

    Figure 6.  Establishment process of adaptive Kriging surrogate model

    图 7  刚度失效模式下结果对比图

    Figure 7.  Comparison of results in stiffness failure mode

    图 8  中介机匣Mises应力对比图

    Figure 8.  Comparison of Mises stress of intermediate casing

    图 9  两失效模式极限状态函数散点密度图

    Figure 9.  Scatter diagram of limit state function in two failure modes

    图 10  Copula模型建模流程

    Figure 10.  Modeling process of Copula model

    表  1  TC4材料参数

    Table  1.   TC4 material parameters

    参数数值及说明
    材料TC4
    密度/(g/cm³)4.51
    泊松比0.34
    弹性模量/MPa110000
    许用应力/MPa1123
    下载: 导出CSV

    表  2  中介机匣输入参数

    Table  2.   Intermediate casing input parameters

    序号 参数名称 分布 均值 变异系数 截断区间
    1 外机匣半径$ {R_1} $/mm 截断正态 200 0.02 [172, 288]
    2 内机匣半径$ {R_2} $/mm 截断正态 120 0.02 [103.2, 136.8]
    3 外机匣长度$ {L_1} $/mm 截断正态 100 0.02 [86, 114]
    4 内机匣长度$ {L_2} $/mm 截断正态 110 0.02 [94.6, 125.4]
    5 发动机推力$ F $/kN 正态分布 150 0.05
    6 弹性模量$ E $/MPa 正态分布 110000 0.03
    7 泊松比$ \mu $ 正态分布 0.34 0.03
    下载: 导出CSV

    表  3  自适应Kriging代理模型预测精度

    Table  3.   Prediction accuracy of AK surrogate model

    评估指标 ERMS R2 EMR/%
    Mises应力 4.6056 0.67 4.43
    径向位移 0.1565 0.96 4.76
    下载: 导出CSV

    表  4  两方法计算结果对比

    Table  4.   Comparison of calculation results of two methods

    方法 静强度失效
    概率/10−6
    刚度失效
    概率/10−6
    系统失效
    概率/10−6
    计算
    时长/s
    AK-GSS 2.0648 1.2308 3.0395 522.7
    AK-MCS 2.2000 1.2000 3.0000 4249.5
    下载: 导出CSV

    表  5  双失效模式的相关性模型

    Table  5.   Copula model of two failure modes

    求解
    参数
    Gaussian
    模型
    Clayton
    模型
    Gumbel
    模型
    Frank
    模型
    $\hat \theta $ 0.8966 1.8329 1.9633 5.8548
    AIC −33.1803 −32.5998 −29.5695 −29.3299
    ${d^2}$ 0.0208 0.0290 0.0245 0.0315
    下载: 导出CSV
  • [1] 刘建明,郝晟淳,武卉,等. 大落差长度比中介机匣气动性能试验及数值模拟[J]. 航空动力学报,2022,37(7): 1560-1568. LIU Jianming,HAO Shengchun,WU Hui,et al. Experimental and numerical simulation on aerodynamic performance of large radius change to length ratio intermediate casing[J]. Journal of Aerospace Power,2022,37(7): 1560-1568. (in Chinese

    LIU Jianming, HAO Shengchun, WU Hui, et al. Experimental and numerical simulation on aerodynamic performance of large radius change to length ratio intermediate casing[J]. Journal of Aerospace Power, 2022, 37(7): 1560-1568. (in Chinese)
    [2] 李飞,赵彦杰,李玉龙,等. 钛合金中介机匣快速熔模铸造工艺研究[J]. 特种铸造及有色合金,2019,39(6): 637-639. LI Fei,ZHAO Yanjie,LI Yulong,et al. Rapid investment casting process for titanium alloy intermediate casing[J]. Special Casting & Nonferrous Alloys,2019,39(6): 637-639. (in Chinese

    LI Fei, ZHAO Yanjie, LI Yulong, et al. Rapid investment casting process for titanium alloy intermediate casing[J]. Special Casting & Nonferrous Alloys, 2019, 39(6): 637-639. (in Chinese)
    [3] 张屹尚,陈健. 航空发动机轮盘结构可靠性全局灵敏度分析[J]. 兵器装备工程学报,2021,42(4): 244-249. ZHANG Yishang,CHEN Jian. Global sensitivity analysis for turbo-engine disk structures with uncertainties based on failure probability[J]. Journal of Ordnance Equipment Engineering,2021,42(4): 244-249. (in Chinese doi: 10.11809/bqzbgcxb2021.04.046

    ZHANG Yishang, CHEN Jian. Global sensitivity analysis for turbo-engine disk structures with uncertainties based on failure probability[J]. Journal of Ordnance Equipment Engineering, 2021, 42(4): 244-249. (in Chinese) doi: 10.11809/bqzbgcxb2021.04.046
    [4] 王新刚,申强,韩凯忠,等. 竞争失效下多元退化建模的航空发动机可靠性分析[J]. 东北大学学报(自然科学版),2021,42(6): 807-813,820. WANG Xingang,SHEN Qiang,HAN Kaizhong,et al. Reliability analysis of aero-engines based on multivariate degradation modeling under competitive failure[J]. Journal of Northeastern University (Natural Science),2021,42(6): 807-813,820. (in Chinese doi: 10.12068/j.issn.1005-3026.2021.06.008

    WANG Xingang, SHEN Qiang, HAN Kaizhong, et al. Reliability analysis of aero-engines based on multivariate degradation modeling under competitive failure[J]. Journal of Northeastern University (Natural Science), 2021, 42(6): 807-813, 820. (in Chinese) doi: 10.12068/j.issn.1005-3026.2021.06.008
    [5] 郭峰. Co-Kriging代理模型在压气机叶栅气动优化中的应用研究[D]. 哈尔滨: 哈尔滨工业大学,2019. GUO Feng. Application study of co-kriging surrogate model in compressor cascade aerodynamic optimization[D]. Harbin: Harbin Institute of Technology,2019. (in Chinese

    GUO Feng. Application study of co-kriging surrogate model in compressor cascade aerodynamic optimization[D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese)
    [6] ZHAO Dezi,CAI Na. Aeroengine reliability prediction based on fuzzy and interval number[J]. Procedia Engineering,2015,99: 1284-1288. doi: 10.1016/j.proeng.2014.12.660
    [7] CHOI S K,GRANDHI R V,CANFIELD R A. Reliability-based structural design[M]. London: Springer,2007.
    [8] MAINÇON P. A first order reliability method for series systems[J]. Structural Safety,2000,22(1): 5-26. doi: 10.1016/S0167-4730(99)00036-3
    [9] ZHANG Junfu,DU Xiaoping. A second-order reliability method with first-order efficiency[J]. Journal of Mechanical Design,2010,132(10): 101006. doi: 10.1115/1.4002459
    [10] SUN Zhili,WANG Jian,LI Rui,et al. LIF: a new Kriging based learning function and its application to structural reliability analysis[J]. Reliability Engineering and System Safety,2017,157: 152-165. doi: 10.1016/j.ress.2016.09.003
    [11] ZHANG Xufang,WANG Lei,SØRENSEN J D. AKOIS: an adaptive Kriging oriented importance sampling method for structural system reliability analysis[J]. Structural Safety,2020,82: 101876. doi: 10.1016/j.strusafe.2019.101876
    [12] WANG Zeyu,SHAFIEEZADEH A. REAK: reliability analysis through Error rate-based Adaptive Kriging[J]. Reliability Engineering & System Safety,2019,182: 33-45.
    [13] 陈雷,乔百杰,敖春燕,等. 基于叶端定时的转子叶片动应变重构不确定性量化[J]. 航空动力学报,2022,37(7): 1456-1468. CHEN Lei,QIAO Baijie,AO Chunyan,et al. Uncertainty quantification of rotor blade dynamic strain reconstruction based on blade tip timing[J]. Journal of Aerospace Power,2022,37(7): 1456-1468. (in Chinese

    CHEN Lei, QIAO Baijie, AO Chunyan, et al. Uncertainty quantification of rotor blade dynamic strain reconstruction based on blade tip timing[J]. Journal of Aerospace Power, 2022, 37(7): 1456-1468. (in Chinese)
    [14] LI Hongshuang,MA Yuanzhuo,CAO Zijun. A generalized Subset Simulation approach for estimating small failure probabilities of multiple stochastic responses[J]. Computers and Structures,2015,153: 239-251. doi: 10.1016/j.compstruc.2014.10.014
    [15] LIU Peiling,DER KIUREGHIAN A. Multivariate distribution models with prescribed marginals and covariances[J]. Probabilistic Engineering Mechanics,1986,1(2): 105-112. doi: 10.1016/0266-8920(86)90033-0
    [16] ROSENBLATT M. Remarks on a multivariate transformation[J]. The Annals of Mathematical Statistics,1952,23(3): 470-472. doi: 10.1214/aoms/1177729394
    [17] RAYENS B,NELSEN R B. An introduction to copulas[J]. Technometrics,2000,42(3): 317.
    [18] TANG Xiaosong,LI Dianqing,ZHOU Chuangbing,et al. Impact of copulas for modeling bivariate distributions on system reliability[J]. Structural Safety,2013,44: 80-90. doi: 10.1016/j.strusafe.2013.06.004
    [19] 唐家银,何平,宋东利. 基于Copula函数的失效相关构件可靠度计算[J]. 机械强度,2010,32(5): 740-744. TANG Jiayin,HE Ping,SONG Dongli. Reliability calculation of components with failure correlation based on copulas[J]. Journal of Mechanical Strength,2010,32(5): 740-744. (in Chinese

    TANG Jiayin, HE Ping, SONG Dongli. Reliability calculation of components with failure correlation based on copulas[J]. Journal of Mechanical Strength, 2010, 32(5): 740-744. (in Chinese)
    [20] 于慧臣,吴学仁. 航空发动机设计用材料手册[M]. 北京: 航空工业出版社,2014. YU Huichen,WU Xueren. Handbook of materials for aero-engine design[M]. 1st ed. Beijing: Aviation Industry Press,2014. (in Chinese

    YU Huichen, WU Xueren. Handbook of materials for aero-engine design[M]. 1st ed. Beijing: Aviation Industry Press, 2014. (in Chinese)
    [21] 李春胜,黄德彬. 金属材料手册[M]. 北京: 化学工业出版社,2005. LI Chunsheng,HUANG Debin. Handbook of metal materials[M]. Beijing: Chemical Industry Press,2005. (in Chinese

    LI Chunsheng, HUANG Debin. Handbook of metal materials[M]. Beijing: Chemical Industry Press, 2005. (in Chinese)
    [22] 龚良慈,李永新,刘尔重,等. 航空发动机设计手册[M]. 北京: 航空工业出版社,2001. GONG Liangci,HUANG Debin. Aeroengine design manual [M]. 1st ed. Beijing: Aviation Industry Press,2001. (in Chinese

    GONG Liangci, HUANG Debin. Aeroengine design manual [M]. 1st ed. Beijing: Aviation Industry Press, 2001. (in Chinese)
    [23] 曹金凤,王旭春,孔亮. Python语言在Abaqus中的应用[M]. 北京: 机械工业出版社,2011. CAO Jinfeng,WANG Xuchun,KONG Liang. Application of python language in Abaqus[M]. Beijing: China Machine Press,2011. (in Chinese

    CAO Jinfeng, WANG Xuchun, KONG Liang. Application of python language in Abaqus[M]. Beijing: China Machine Press, 2011. (in Chinese)
    [24] XIAO Ningcong,YUAN Kai,ZHOU Chengning. Adaptive kriging-based efficient reliability method for structural systems with multiple failure modes and mixed variables[J]. Computer Methods in Applied Mechanics and Engineering,2020,359: 112649. doi: 10.1016/j.cma.2019.112649
    [25] LOPHAVEN S,NIELSEN H B,SØNDERGAARD J. DACE - A Matlab Kriging toolbox: version 2.0[R]. Copenhagen,Denmark: Technical University of Denmark,2002.
    [26] AU S K,BECK J L. Estimation of small failure probabilities in high dimensions by subset simulation[J]. Probabilistic Engineering Mechanics,2001,16(4): 263-277. doi: 10.1016/S0266-8920(01)00019-4
    [27] LIU Shisong,LI Shaojun. Multi-model D-vine copula regression model with vine copula-based dependence description[J]. Computers and Chemical Engineering,2022,161: 107788. doi: 10.1016/j.compchemeng.2022.107788
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  34
  • HTML浏览量:  18
  • PDF量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-19
  • 网络出版日期:  2024-02-28

目录

    /

    返回文章
    返回