留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

针刺复合材料层次化建模及弹性性能预测

刘昱 王荣桥 胡殿印 刘茜 庞生洋

刘昱, 王荣桥, 胡殿印, 等. 针刺复合材料层次化建模及弹性性能预测[J]. 航空动力学报, 2024, 39(2):20220728 doi: 10.13224/j.cnki.jasp.20220728
引用本文: 刘昱, 王荣桥, 胡殿印, 等. 针刺复合材料层次化建模及弹性性能预测[J]. 航空动力学报, 2024, 39(2):20220728 doi: 10.13224/j.cnki.jasp.20220728
LIU Yu, WANG Rongqiao, HU Dianyin, et al. Hierarchical modeling and elastic property prediction of the needled composite[J]. Journal of Aerospace Power, 2024, 39(2):20220728 doi: 10.13224/j.cnki.jasp.20220728
Citation: LIU Yu, WANG Rongqiao, HU Dianyin, et al. Hierarchical modeling and elastic property prediction of the needled composite[J]. Journal of Aerospace Power, 2024, 39(2):20220728 doi: 10.13224/j.cnki.jasp.20220728

针刺复合材料层次化建模及弹性性能预测

doi: 10.13224/j.cnki.jasp.20220728
基金项目: 国家自然科学基金(52022007,52105138,52275142)
详细信息
    作者简介:

    刘昱(1995-),男,博士生,主要从事航空发动机结构强度、复合材料多尺度分析及表征研究。E-mail:liuyu0707@buaa.edu.cn

    通讯作者:

    刘茜(1994-),女,副教授,博士,主要从事航空发动机结构强度及可靠性分析、复合材料建模和损伤分析研究。E-mail:liuxi@buaa.edu.cn

  • 中图分类号: V254.2

Hierarchical modeling and elastic property prediction of the needled composite

  • 摘要:

    针对针刺复合材料中网胎层等结构复杂导致难以划分周期性网格的问题,基于局部径向基点插值模型(LRPIM)发展了非周期性网格的周期性边界条件施加方法。开展X射线断层扫描试验并分析材料微观组织,提取出非针刺区域、针刺绕过区域和针刺穿过区域三种典型特征结构。考虑到针刺复合材料组成成分复杂的特点,提出了基于多特征结构的层次化建模方法,将复杂微观特征结构分解至单一材料相进行精细化建模,并按层次逐级均匀化以获取材料弹性性能。开展针刺复合材料力学性能试验,结果表明x方向拉伸模量和面内切变模量的预测误差分别为1.5%和6.4%,验证了所提建模方法的准确性。

     

  • 图 1  针刺预制体示意图

    Figure 1.  Schematic diagram of the needled preform

    图 2  针刺复合材料拉伸试件及孔隙分布(单位:mm)

    Figure 2.  Tensile specimens and pore distribution of needled composites (unit: mm)

    图 3  针刺复合材料典型微观结构

    Figure 3.  Typical microstructures of needled composites

    图 4  层次化建模及等效过程

    Figure 4.  Hierarchically modeling and equivalent process

    图 5  三种RVE模型示意图

    Figure 5.  Schematic diagram of the three RVE models

    图 6  周期性边界的三种情况

    Figure 6.  Three cases of periodic boundaries

    图 7  RSA算法流程图

    Figure 7.  RSA flow chart

    图 8  材料方向赋予

    Figure 8.  Material orientation assigned

    图 9  非针刺区域及材料相模型

    Figure 9.  Un-needling region and material phases model

    图 10  针刺绕过模型及材料相模型

    Figure 10.  Needling bypass model and material phases model

    图 11  针刺穿过模型网格划分及材料方向赋予

    Figure 11.  Needling through model meshing and material orientation assignment

    图 12  宏观模型中针刺区域的分布

    Figure 12.  Distribution of needling regions in the macroscopic model

    图 13  针刺复合材料宏观模型

    Figure 13.  Macroscopic modeling of needled composites

    图 14  平行六面体RVE模型的几何标记

    Figure 14.  Geometric markings for the RVE model of a parallel hexahedron

    图 15  非针刺模型1%γxy剪切应变下的应力云图

    Figure 15.  Stress contours at 1%γxy shear strain in the un-needling regions

    图 16  针刺绕过模型1%γxy剪切应变下的应力云图

    Figure 16.  Stress contours at 1%γxy shear strain in the needling bypass model

    图 17  针刺穿过模型1%εy拉伸应变下的应力云图

    Figure 17.  Stress contour at 1%εy tensile strain in the needling through model

    图 18  网胎层纤维取向分析

    Figure 18.  Fiber orientation analysis of random fiber layers

    图 19  宏观模型1%γyz剪切应变下的应力云图

    Figure 19.  Stress contours at 1%γyz shear strain for the macroscopic model

    图 20  针刺纤维含量对力学性能的影响规律

    Figure 20.  Effect of needling fiber fraction on the mechanical properties

    表  1  纤维和基体的材料参数

    Table  1.   Material parameters of fibers and matrixes

    组分参数数值
    碳纤维[15]纵向拉伸模量/GPa230
    横向拉伸模量/GPa18.226
    纵向泊松比0.27
    横向泊松比0.3
    纵向切变模量/GPa36.597
    基体弹性模量/GPa22.607
    泊松比0.218
    下载: 导出CSV

    表  2  不同纤维的参数ab取值

    Table  2.   Values of a and b of different fibers

    参数纤维序号
    123456
    a/mm0.050.030.0150.00500
    b/mm0.130.190.2550.3250.40.48
    下载: 导出CSV

    表  3  等效弹性性能预测

    Table  3.   Prediction of equivalent elastic properties

    模型Ex/GPaEy/GPaEz/GPaυxyυxzυyzGxy/GPaGxz/GPaGyz/GPa
    非针刺-无纬布81.4521.6921.690.2310.2310.26813.0613.065.54
    非针刺-网胎20.5920.3719.650.2150.2210.2167.967.526.85
    非针刺区域59.9359.9020.020.2300.2510.25514.2711.0110.95
    针刺绕过-无纬布78.3633.7637.670.2230.2310.25115.5915.447.89
    针刺绕过-网胎18.6418.6122.870.2540.2200.2197.077.456.89
    针刺绕过模型53.2453.0125.650.2320.2260.24014.9415.347.66
    针刺穿过模型42.8242.7828.110.1980.1800.18212.4012.7412.75
    宏观模型53.1558.1524.590.1170.0900.11613.2710.2110.30
    试验值52.3712.47[15]
    下载: 导出CSV
  • [1] DU Xiangbin,LI Diansen,WEI Qihong,et al. High temperature bending properties and failure mechanism of 3D needled C/SiC composites up to 2000 ℃[J]. Journal of the European Ceramic Society,2022,42(6): 3036-3043. doi: 10.1016/j.jeurceramsoc.2022.01.044
    [2] YAO Tianlei,CHEN Xiaoming,LI Jiao,et al. Experimental and numerical study of interlaminar shear property and failure mechanism of none-felt needled composites[J]. Composite Structures,2022,290: 115507.1-115507.11.
    [3] LIANG Xiaoqiang,GAO Xiguang,ZHANG Huajun,et al. Interlaminar shear behaviors of 2D needled C/SiC composites under compressive and tensile loading[J]. Ceramics International,2021,47(4): 4954-4962. doi: 10.1016/j.ceramint.2020.10.071
    [4] CHEN Xiaoming,CHEN Li,ZHANG Chunyan,et al. Three-dimensional needle-punching for composites: a review[J]. Composites: Part A Applied Science and Manufacturing,2016,85: 12-30. doi: 10.1016/j.compositesa.2016.03.004
    [5] ARTEIRO A,FURTADO C,CATALANOTTI G,et al. Thin-ply polymer composite materials: a review[J]. Composites Part A: Applied Science and Manufacturing,2020,132: 105777. doi: 10.1016/j.compositesa.2020.105777
    [6] 胡殿印,杨尧,郭小军,等. 一种平纹编织复合材料的三维通用单胞模型[J]. 航空动力学报,2019,34(3): 608-615. doi: 10.13224/j.cnki.jasp.2019.03.012

    HU Dianyin,YANG Yao,GUO Xiaojun,et al. A 3D general method of cells model for plain weave composites[J]. Journal of Aerospace Power,2019,34(3): 608-615. (in Chinese) doi: 10.13224/j.cnki.jasp.2019.03.012
    [7] GAO Xuhao,YUAN Li,FU Yutong,et al. Prediction of mechanical properties on 3D braided composites with void defects[J]. Composites: Part B Engineering,2020,197: 108164. doi: 10.1016/j.compositesb.2020.108164
    [8] LACOSTE M,LACOMBE A,JOYEZ P,et al. Carbon/carbon extendible nozzles[J]. Acta Astronautica,2002,50(6): 357-367. doi: 10.1016/S0094-5765(01)00178-3
    [9] 李明旭. 针刺碳/碳复合材料超高温拉伸力学性能试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    LI Mingxu. Experimental study on ultra-high temperature tensile mechanical properties of needle-punched C/C composites[D]. Harbin: Harbin Institute of Technology, 2020. (in Chinese)
    [10] WAN Fan,LIU Rongjun,WANG Yanfei,et al. In situ observation of compression damage in a 3D needled-punched carbon fiber-silicon carbide ceramic matrix composite[J]. Composite Structures,2019,210: 189-201. doi: 10.1016/j.compstruct.2018.11.041
    [11] 李龙,高希光,史剑,等. 考虑孔隙的针刺C/SiC复合材料弹性参数计算[J]. 航空动力学报,2013,28(6): 1257-1263. doi: 10.13224/j.cnki.jasp.2013.06.021

    LI Long,GAO Xiguang,SHI Jian,et al. Calculation of needled C/SiC composite elastic parameters in consideration of the porosity[J]. Journal of Aerospace Power,2013,28(6): 1257-1263. (in Chinese) doi: 10.13224/j.cnki.jasp.2013.06.021
    [12] KOOHBOR B,MONTGOMERY C B,SOTTOS N R. Identification of RVE length scale in fiber composites via combined optical and SEM digital image correlation[J]. Composites Science and Technology,2022,227: 109613. doi: 10.1016/j.compscitech.2022.109613
    [13] 贾永臻. 针刺C/C复合材料细观结构表征及力学行为仿真研究[D]. 武汉: 华中科技大学, 2017.

    JIA Yongzhen. Research on meso-structure characterization and mechanical behavior simulation of needled carbon/carbon composites[D]. Wuhan: Huazhong University of Science and Technology, 2017. (in Chinese)
    [14] MASSARWA E,ABOUDI J,HAJ-ALI R. A multiscale progressive damage analysis for laminated composite structures using the parametric HFGMC micromechanics[J]. Composite Structures,2018,188: 159-172. doi: 10.1016/j.compstruct.2017.11.089
    [15] XIE Junbo,LIANG Jun,FANG Guodong,et al. Effect of needling parameters on the effective properties of 3D needled C/C-SiC composites[J]. Composites Science and Technology,2015,117: 69-77. doi: 10.1016/j.compscitech.2015.06.003
    [16] XU Yingjie,ZHANG Pan,LU Huan,et al. Hierarchically modeling the elastic properties of 2D needled carbon/carbon composites[J]. Composite Structures,2015,133: 148-156. doi: 10.1016/j.compstruct.2015.07.081
    [17] MENG Songhe,SONG Leying,XU Chenghai,et al. Predicting the effective properties of 3D needled carbon/carbon composites by a hierarchical scheme with a fiber-based representative unit cell[J]. Composite Structures,2017,172: 198-209. doi: 10.1016/j.compstruct.2017.03.090
    [18] WU W, OWINO J, AL-OSTAZ A, et al. Applying periodic boundary conditions in finite element analysis[C]//Applying Periodic Boundary Conditions in Finite Element Analysis. Providence, US: SIMULIA Community Conference, 2014: 707-719.
    [19] 张超,许希武,严雪. 纺织复合材料细观力学分析的一般性周期性边界条件及其有限元实现[J]. 航空学报,2013,34(7): 1636-1645.

    ZHANG Chao,XU Xiwu,YAN Xue. General periodic boundary conditions and their application to micromechanical finite element analysis of textile composites[J]. Acta Aeronautica et Astronautica Sinica,2013,34(7): 1636-1645. (in Chinese)
    [20] NGUYEN V D,BÉCHET E,GEUZAINE C,et al. Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation[J]. Computational Materials Science,2012,55: 390-406. doi: 10.1016/j.commatsci.2011.10.017
    [21] WANG Rongqiao,ZHANG Long,HU Dianyin,et al. A novel approach to impose periodic boundary condition on braided composite RVE model based on RPIM[J]. Composite Structures,2017,163: 77-88. doi: 10.1016/j.compstruct.2016.12.032
    [22] TANG Sufang,HU Chenglong. Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: a review[J]. Journal of Materials Science & Technology,2017,33(2): 117-130.
    [23] YU Jian,ZHOU Chuwei,ZHANG Haijun. A micro-image based reconstructed finite element model of needle-punched C/C composite[J]. Composites Science and Technology,2017,153: 48-61. doi: 10.1016/j.compscitech.2017.09.029
    [24] KWON Y W, ALLEN D H, TALREJA R. Multiscale Modeling and Simulation of Composite Materials and Structures[M]. Boston, MA: Springer US, 2008.
    [25] TIAN Wenlong,QI Lehua,ZHOU Jiming,et al. Representative volume element for composites reinforced by spatially randomly distributed discontinuous fibers and its applications[J]. Composite Structures,2015,131: 366-373. doi: 10.1016/j.compstruct.2015.05.014
    [26] WANG Rongqiao,LIU Yu,LIU Xi,et al. Assessment of mechanical properties for three-dimensional needled composites: a geometric partitioning strategy dealing with mesoscopic needling damage[J]. Materials,2022,15(16): 5659. doi: 10.3390/ma15165659
    [27] MAO Jianxing,HU Dianyin,LI Da,et al. Novel adaptive surrogate model based on LRPIM for probabilistic analysis of turbine disc[J]. Aerospace Science and Technology,2017,70: 76-87. doi: 10.1016/j.ast.2017.07.044
    [28] WANG Rongqiao,LIU Xi,HU Dianyin,et al. Reliability assessment for system-level turbine disc structure using LRPIM-based surrogate model considering multi-failure modes correlation[J]. Aerospace Science and Technology,2019,95: 105422. doi: 10.1016/j.ast.2019.105422
    [29] SUN Yueqi,HONG Changqing,ZHANG Xinghong,et al. Preparation and properties of SiOC ceramic modified carbon fiber needled felt preform composites[J]. Ceramics International,2020,46(2): 1743-1749. doi: 10.1016/j.ceramint.2019.09.148
    [30] 谢军波. 针刺预制体工艺参数建模及复合材料本构关系研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    XIE Junbo. Parametric modeling of needling process and constitutive relationship of needled composite[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  158
  • HTML浏览量:  48
  • PDF量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-26
  • 网络出版日期:  2023-10-27

目录

    /

    返回文章
    返回