留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

椭圆锥孔对导叶前缘冷效的影响及优化

江艳 李海旺 谢刚 周志宇

江艳, 李海旺, 谢刚, 等. 椭圆锥孔对导叶前缘冷效的影响及优化[J]. 航空动力学报, 2024, 39(9):20220736 doi: 10.13224/j.cnki.jasp.20220736
引用本文: 江艳, 李海旺, 谢刚, 等. 椭圆锥孔对导叶前缘冷效的影响及优化[J]. 航空动力学报, 2024, 39(9):20220736 doi: 10.13224/j.cnki.jasp.20220736
JIANG Yan, LI Haiwang, XIE Gang, et al. Film cooling performance and optimization of ellipse conical holes onturbine vanes leading edge[J]. Journal of Aerospace Power, 2024, 39(9):20220736 doi: 10.13224/j.cnki.jasp.20220736
Citation: JIANG Yan, LI Haiwang, XIE Gang, et al. Film cooling performance and optimization of ellipse conical holes onturbine vanes leading edge[J]. Journal of Aerospace Power, 2024, 39(9):20220736 doi: 10.13224/j.cnki.jasp.20220736

椭圆锥孔对导叶前缘冷效的影响及优化

doi: 10.13224/j.cnki.jasp.20220736
基金项目: 国家自然科学基金(51906008,51822602); 中央高校基本科研业务费(YWF-19BJ-J-293);国家科技重大专项(2017-Ⅲ-0003-0027)
详细信息
    作者简介:

    江艳(1998-),女,博士生,主要从事涡轮叶片气膜冷却研究。E-mail:zhongkongwen@126.com

    通讯作者:

    周志宇(1993-),男,博士后,博士,主要从事涡轮叶片气膜冷却研究。E-mail:zhongkongwen0924@163.com

  • 中图分类号: V231.3

Film cooling performance and optimization of ellipse conical holes onturbine vanes leading edge

  • 摘要:

    采用数值仿真方法对椭圆锥孔在高压涡轮导叶前缘的气膜冷却效率进行了探究,分析对比了椭圆柱孔的两个结构参数流向扩张角和径向扩张角对前缘气膜冷却效率的影响,且分别在流向扩张角为0°~18°和径向扩张角为0°~16°范围内对椭圆锥孔进行了优化。结果表明:流向扩张角为1.4°且径向扩张角为11.1°时的椭圆锥孔表现出最高的气膜冷却效率,其相较于圆柱孔的冷却效率提升了147.5%,且椭圆锥孔的结构参数随气膜冷却效率的变化规律可拟合成四次方函数关系,当径向扩张角很小时,气膜冷却效率随流向扩张角增大,反之,气膜冷却效率基本随流向扩张角增大而减小;当流向扩张角较小时,气膜冷却效率大致随径向扩张角的增大而先增后减,当流向扩张角较大时,气膜冷却效率基本保持不变或呈现一个较小的增幅。

     

  • 图 1  数值计算流体域模型

    Figure 1.  Numerical fluid domain model

    图 2  椭圆锥孔几何结构示意图

    Figure 2.  Geometry of the ellipse conical hole

    图 3  流体域网格

    Figure 3.  Fluid domain grids

    图 4  网格独立性检验

    Figure 4.  Grid independence test

    图 5  数值计算方法验证

    Figure 5.  Validation of numerical simulation method

    图 6  响应面

    Figure 6.  Response surface

    图 7  流向扩张角和径向扩张角对冷效的影响规律

    Figure 7.  Film cooling effectiveness for the effect of forward expansion angle and lateral expansion angle

    图 8  样本点及最优点椭圆锥孔绝热冷却效率面分布

    Figure 8.  Distributions of the film cooling effectiveness for selected design points and the optimum

    图 9  面温度分布图及面流线

    Figure 9.  Temperature distributions and streamlines

    表  1  回归方程

    Table  1.   Coefficients in the regression equation

    参数 系数
    截距 0.039641
    δ 0.010705
    β 0.009493
    δβ −0.00132
    δ2 −0.00211
    β2 −0.00048
    δ2β 0.000041
    δβ2 0.000052
    δ3 0.000169
    β3 0.00003
    δ2β2/10−6 −2.57
    δ3 β/10−7 1.70
    δβ3/10−6 1.53
    δ4/10−6 −4.44
    β4/10−6 −1.92
    下载: 导出CSV

    表  2  回归方程可靠性验证

    Table  2.   Reliability verification of the regression equation

    δ/(°) β/(°) 真实值 预测值 误差/%
    0 0 0.0400 0.0396 −1.00
    0 4 0.0712 0.0714 0.28
    0 8 0.0913 0.0924 1.20
    0 12 0.0976 0.0967 −0.92
    0 16 0.0662 0.0664 0.30
    4.5 0 0.0585 0.0587 0.34
    4.5 4 0.0741 0.0733 −1.08
    4.5 8 0.0851 0.0856 0.59
    4.5 12 0.0922 0.0922 0
    4.5 16 0.0780 0.0780 0
    9 0 0.0576 0.0596 3.47
    9 4 0.0643 0.0623 −3.11
    9 8 0.0678 0.0678 0
    9 12 0.0769 0.0754 −1.95
    9 16 0.0712 0.0726 1.97
    13.5 0 0.0713 0.0693 −2.81
    13.5 4 0.0645 0.0658 2.02
    13.5 8 0.0662 0.0669 1.06
    13.5 12 0.0721 0.0745 3.33
    13.5 16 0.0809 0.0786 −2.84
    18 0 0.0711 0.0713 0.28
    18 4 0.0663 0.0676 1.96
    18 8 0.0693 0.0669 −3.46
    18 12 0.0738 0.0738 0
    18 16 0.0803 0.0811 1.00
    下载: 导出CSV
  • [1] METZGER D E. Discussion: “film cooling with injection through holes: adiabatic wall temperatures downstream of a circular hole” (Goldstein R J,Eckert E R G,and Ramsey J W,1968,ASME J. Eng. Power,90,pp. 384-393)[J]. Journal of Engineering for Power,1968,90(4): 393-394. doi: 10.1115/1.3609224
    [2] BERGELES G,GOSMAN A D,LAUNDER B E. The near-field character of a jet discharged normal to a main stream[J]. Journal of Heat Transfer,1976,98(3): 373-378. doi: 10.1115/1.3450563
    [3] BERGELES G,GOSMAN A D,LAUNDER B E. Near-field character of a jet discharged through a wall at 30 deg Toa mainstream[J]. AIAA Journal,1977,15(4): 499-504. doi: 10.2514/3.7343
    [4] WALTERS D K,LEYLEK J H. A detailed analysis of film-cooling physics: Part I streamwise injection with cylindrical holes[J]. Journal of Turbomachinery,2000,122(1): 102-112. doi: 10.1115/1.555433
    [5] BERNSDORF S,ROSE M G,ABHARI R S. Modeling of film cooling: Part I experimental study of flow structure[J]. Journal of Turbomachinery,2006,128(1): 141-149. doi: 10.1115/1.2098768
    [6] GOLDSTEIN R J,ECKERT E R G,BURGGRAF F. Effects of hole geometry and density on three-dimensional film cooling[J]. International Journal of Heat and Mass Transfer,1974,17(5): 595-607. doi: 10.1016/0017-9310(74)90007-6
    [7] BAI Bo,LI Zhigang,LI Jun,et al. The effects of axisymmetric convergent contouring and blowing ratio on endwall film cooling and vane pressure side surface phantom cooling performance[J]. Journal of Engineering for Gas Turbines and Power,2022,144(2): 021020. doi: 10.1115/1.4052500
    [8] KANG Y S,JUN S,RHEE D H. Large eddy simulations on film cooling flow from a fan-shaped cooling hole on a flat plate[J]. The KSFM Journal of Fluid Machinery,2018,21(6): 5-13. doi: 10.5293/kfma.2018.21.6.005
    [9] THOLE K,GRITSCH M,SCHULZ A,et al. Flowfield measurements for film-cooling holes with expanded exits[J]. Journal of Turbomachinery,1998,120(2): 327-336. doi: 10.1115/1.2841410
    [10] SAUMWEBER C,SCHULZ A. Effect of geometry variations on the cooling performance of fan-shaped cooling holes[J]. Journal of Turbomachinery,2012,134(6): 1.
    [11] PARK S H,KANG Y J,SEO H J,et al. Experimental optimization of a fan-shaped film cooling hole with 30 degrees-injection angle and 6-hole length-to-diameter ratio[J]. International Journal of Heat and Mass Transfer,2019,144: 118652. doi: 10.1016/j.ijheatmasstransfer.2019.118652
    [12] SEO H J,KANG Y J,LEE H C,et al. Optimization of the configuration of the laidback fan-shaped film cooling hole with a lateral expansion angle of 10 degrees[J]. Applied Thermal Engineering,2019,153: 379-389. doi: 10.1016/j.applthermaleng.2019.03.029
    [13] AGARWAL S,GICQUEL L,DUCHAINE F,et al. Analysis of the unsteady flow field inside a fan-shaped cooling hole predicted by large-eddy simulation[C]//Volume 7B: Heat Transfer. American Society of Mechanical Engineers,2020: 1-11.
    [14] GAO Zhihong,NARZARY D P,HAN J C. Film-cooling on a gas turbine blade pressure side or suction side with compound angle shaped holes[J]. Journal of Turbomachinery,2009,131(1): 011019-011030. doi: 10.1115/1.2813012
    [15] CHO H H,RHEE D H,KIM B G. Enhancement of film cooling performance using a shaped film cooling hole with compound angle injection[J]. JSME International Journal Series B,2001,44(1): 99-110. doi: 10.1299/jsmeb.44.99
    [16] SARGISON J E,GUO S M,OLDFIELD M L G,et al. A converging slot-hole film-cooling geometry: Part 1 low-speed flat-plate heat transfer and loss[C]// Proceedings of ASME Turbo Expo 2001: Power for Land,Sea,and Air. New Orleans,US: ASME,2001: 453-460.
    [17] WANG Chunhua,FAN Fangsu,ZHANG Jingzhou,et al. Large eddy simulation of film cooling flow from converging slot-holes[J]. International Journal of Thermal Sciences,2018,126: 238-251. doi: 10.1016/j.ijthermalsci.2018.01.007
    [18] LU Yiping. Effect of hole configurations on film cooling from cylindrical inclined holes for the application to gas turbine blades[D]. Baton Rouge,US: Louisiana State University Libraries,2007.
    [19] HOU Rui,WEN Fengbo,LUO Yuxi,et al. Large eddy simulation of film cooling flow from round and trenched holes[J]. International Journal of Heat and Mass Transfer,2019,144: 118631. doi: 10.1016/j.ijheatmasstransfer.2019.118631
    [20] KUSTERER K,ELYAS A,BOHN D,et al. A parametric study on the influence of the lateral ejection angle of double-jet holes on the film cooling effectiveness for high blowing ratios[C]// Proceedings of ASME Turbo Expo 2009: Power for Land,Sea,and Air. Orlando,US: ASME,2009: 199-211.
    [21] ZHOU Junfei,WANG Xinjun,LI Jun,et al. Effects of diameter ratio and inclination angle on flow and heat transfer characteristics of sister holes film cooling[J]. International Communications in Heat and Mass Transfer,2020,110: 104426. doi: 10.1016/j.icheatmasstransfer.2019.104426
    [22] LEE Sanga,HWANG W,YEE K. Robust design optimization of a turbine blade film cooling hole affected by roughness and blockage[J]. International Journal of Thermal Sciences,2018,133: 216-229. doi: 10.1016/j.ijthermalsci.2018.07.012
    [23] JONES F B,OLIVER T,BOGARD D G. Adjoint optimization of film cooling hole geometry[C]// Proceedings of ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. Online: ASME,2021: 14-26.
    [24] BAI L C,ZHANG C,TONG Z T,et al. Optimization of geometric parameters of cylindrical film cooling hole with contoured craters to enhance film-cooling effectiveness[J]. Thermophysics and Aeromechanics,2021,28(6): 835-848. doi: 10.1134/S0869864321060081
    [25] PU Jian,ZHANG Tiao,WANG Jian-Hua. Experimental study of combined influences of wall curvature and compound angle on film cooling effectiveness of a fan-shaped film-hole[J]. International Communications in Heat and Mass Transfer,2022,130: 105834. doi: 10.1016/j.icheatmasstransfer.2021.105834
    [26] YU Zhiqiang,LI Chen,AN Baitao,et al. Experimental investigation of film cooling effectiveness on a gas turbine blade pressure surface with diffusion slot holes[J]. Applied Thermal Engineering,2020,168: 114851. doi: 10.1016/j.applthermaleng.2019.114851
    [27] XIE Gang,TAO Zhi,ZHOU Zhi-Yu,et al. Hole arrangement effect to film cooling performance on leading edge region of rotating blade[J]. International Journal of Thermal Sciences,2021,169: 107034. doi: 10.1016/j.ijthermalsci.2021.107034
    [28] 徐永发,李广超,何洪斌,等. 带前缘对吹孔涡轮导向叶片气膜冷却特性实验[J]. 热能动力工程,2022,37(9): 22-30. XU Yongfa,LI Guangchao,HE Hongbin,et al. Experiment on film cooling performance of turbine guide vane with leading edge counter-inclined structure[J]. Journal of Engineering for Thermal Energy and Power,2022,37(9): 22-30. (in Chinese

    XU Yongfa, LI Guangchao, HE Hongbin, et al. Experiment on film cooling performance of turbine guide vane with leading edge counter-inclined structure[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(9): 22-30. (in Chinese)
    [29] ZHOU Wenli,PU Jian,WANG Jianhua,et al. Experimental investigation of hole-geometry effect on unsteady characteristics of film cooling at turbine vane leading edge[J]. International Journal of Thermal Sciences,2022,179: 107715. doi: 10.1016/j.ijthermalsci.2022.107715
    [30] HANG Jin,ZHANG Jingzhou. Numerical study of double-jet film cooling on a semi-cylindrical leading edge[J]. Journal of Thermal Science and Engineering Applications,2022,14(8): 081018. doi: 10.1115/1.4054626
    [31] JIANG Yan,LI Haiwang,LIU Runzhou,et al. Film cooling comparison of shaped holes among the pressure surface,the suction surface and the leading edge of turbine vane[J]. Applied Thermal Engineering,2023,219: 119343. doi: 10.1016/j.applthermaleng.2022.119343
    [32] LIU Cunliang,XIE Gang,WANG Rui,et al. Study on analogy principle of overall cooling effectiveness for composite cooling structures with impingement and effusion[J]. International Journal of Heat and Mass Transfer,2018,127: 639-650. doi: 10.1016/j.ijheatmasstransfer.2018.07.085
    [33] YAO Yu,ZHANG Jingzhou,WANG Liping. Film cooling on a gas turbine blade suction side with converging slot-hole[J]. International Journal of Thermal Sciences,2013,65: 267-279. doi: 10.1016/j.ijthermalsci.2012.10.004
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  41
  • HTML浏览量:  35
  • PDF量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-28
  • 网络出版日期:  2024-02-18

目录

    /

    返回文章
    返回