留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于等效热弹性应变能的智能变形蒙皮模拟分析及实验

张伟 麻越垠 蔡清青 高鑫宇 聂旭涛

张伟, 麻越垠, 蔡清青, 等. 基于等效热弹性应变能的智能变形蒙皮模拟分析及实验[J]. 航空动力学报, 2024, 39(X):20220976 doi: 10.13224/j.cnki.jasp.20220976
引用本文: 张伟, 麻越垠, 蔡清青, 等. 基于等效热弹性应变能的智能变形蒙皮模拟分析及实验[J]. 航空动力学报, 2024, 39(X):20220976 doi: 10.13224/j.cnki.jasp.20220976
ZHANG Wei, MA Yueyin, CAI Qingqing, et al. Numerical and experiment of morphing skin based on equivalent thermoelastic energy method[J]. Journal of Aerospace Power, 2024, 39(X):20220976 doi: 10.13224/j.cnki.jasp.20220976
Citation: ZHANG Wei, MA Yueyin, CAI Qingqing, et al. Numerical and experiment of morphing skin based on equivalent thermoelastic energy method[J]. Journal of Aerospace Power, 2024, 39(X):20220976 doi: 10.13224/j.cnki.jasp.20220976

基于等效热弹性应变能的智能变形蒙皮模拟分析及实验

doi: 10.13224/j.cnki.jasp.20220976
基金项目: 中国空气动力研究与发展中心基础和前沿技术研究基金探索项目(PJD20200240)
详细信息
    作者简介:

    张伟(1988-),男,工程师,主要从事变体飞行器。E -mail:zhangwei6103@126.com

    通讯作者:

    聂旭涛(1979-),男,副研究员,主要从事智能材料和飞行器方面的研究。E-mail:nie_xu_tao@163.com

  • 中图分类号: V259

Numerical and experiment of morphing skin based on equivalent thermoelastic energy method

  • 摘要:

    为简化记忆合金建模,提出了一种等效模拟方法,将形状记忆合金相变能转化为弹性基体的热弹性应变能,并以温差形式表达。以形状记忆合金丝为对象,开展了该方法和Boyd-Lagoudas扩展模型的对比分析。基于Boyd-Lagoudas扩展模型编写的自定义物性子程序,除了常规的退孪马氏体和奥氏体,还考虑了孪生马氏体以提高模拟分析的准确性。等效模型的最大误差为9.8%,验证了方法的有效性和准确性。针对不锈钢及单程记忆合金组成的主动变形蒙皮,等效方法计算的机翼弧高变化幅值为4.03 mm,和实验值3.81 mm吻合,降低了数值模拟难度和计算消耗,表明该方法有助于开展机翼模型的全尺寸模拟研究,并用于设计快速迭代。

     

  • 图 1  主动变形蒙皮结构示意

    Figure 1.  Schematic of active morphing skin

    图 2  主动变形蒙皮结构样件

    Figure 2.  Active morphing skin prototype

    图 3  三类晶体相相互转化示意

    Figure 3.  Schematic of phase transformation among three types

    图 4  SMA丝的应力应变关系

    Figure 4.  Stress-strain curve of SMA wire

    图 5  SMA棒材分析验证模型

    Figure 5.  Validation model of the SMA wire

    图 6  Boyd-Lagoudas扩展模型在步骤1的计算结果

    Figure 6.  Calculation results of step 1 of extended Boyd-Lagoudas model

    图 7  Boyd-Lagoudas扩展模型在步骤2的计算结果

    Figure 7.  Calculation results of step 2 of extended Boyd-Lagoudas model

    图 8  Boyd-Lagoudas扩展模型在步骤3的计算结果

    Figure 8.  Calculation results of step 3 of extended Boyd-Lagoudas model

    图 9  Boyd-Lagoudas扩展模型在步骤4的计算结果

    Figure 9.  Calculation results of step 4 of extended Boyd-Lagoudas model

    图 10  等效热弹性应变方法在步骤1的计算结果

    Figure 10.  Calculation results of step 1 of equivalent thermoelastic energy method

    图 11  等效热弹性应变方法在步骤2的计算结果

    Figure 11.  Calculation results of step 2 of equivalent thermoelastic energy method

    图 12  主动变形蒙皮数值模型

    Figure 12.  Numerical model of the active morphing skin

    图 13  初始状态下的位移及温度

    Figure 13.  Displacement and temperature distribution at the initial condition

    图 14  升温工况下变形蒙皮回复为平直状态

    Figure 14.  Morphing skin recovers to flat state under high-temperature condition

    图 15  实验中变形蒙皮回复为平直状态

    Figure 15.  Morphing skin recovers to flat state in the experiment

    图 16  降温工况下复合变形蒙皮弯曲变形

    Figure 16.  Morphing skin recovers to bending state under low-temperature condition

    图 17  变形蒙皮回复为弯曲状态

    Figure 17.  Morphing skin recovers to bending state in the experiment

    表  1  SMA棒材物性参数

    Table  1.   Material properties parameters for SMA wire

    参数 数值
    马氏体相变起始温度 Ms/K 302
    马氏体相变结束温度Mf/K 291
    奥氏体相变起始温度As/K 326
    奥氏体相变结束温度 Af/K 336
    马氏体弹性模型 EM/104 MPa 2
    奥氏体弹性模量 EA/104 MPa 4
    泊松比 μ 0.33
    马氏体热膨胀系数 αM/10−5 3
    奥氏体热膨胀系数 αA/10−5 3
    最大相变应变 H 0.034
    马氏体退孪开始应力σs/MPa 100
    马氏体退孪结束应力σf/MPa 200
    应力影响系数ρΔs0 -0.3131
    下载: 导出CSV

    表  2  SMA棒材在高温状态下的计算结果

    Table  2.   Numerical results of SMA wire at high temperature

    参数 Boyd-Lagoudas
    扩展模型
    等效
    模型
    相对
    误差/%
    最大等效应力/MPa 321 320 0.3
    轴向变形/mm 1 0.99 1
    孪晶马氏体体积分数 −0.063 −0.069 9.5
    退孪马氏体体积分数 0.067 0.071 6
    奥氏体体积分数 0.995 0.998 0.3
    下载: 导出CSV

    表  3  SMA棒材在低温状态下的计算结果

    Table  3.   Numerical results of SMA wire at low temperature

    参数 Boyd-Lagoudas
    扩展模型
    等效
    模型
    相对
    误差/%
    最大等效应力/MPa 127 130 2.3
    轴向变形/mm 1.48 1.46 1.4
    孪晶马氏体体积分数 0.75 0.73 2.7
    退孪马氏体体积分数 0.28 0.27 3.6
    奥氏体体积分数 −0.03 0
    下载: 导出CSV
  • [1] WIMPRESS J K. Aerodynamic technology applied to takeoff and landing[J]. Annals of the New York Academy of Sciences,1968,154(2): 962-981. doi: 10.1111/j.1749-6632.1968.tb15239.x
    [2] ANDERS S,SELLERS W,WASHBURN A. Active flow control activities at NASA langley: AIAA2004-2623 [R]. Reston,US: AIAA,2004.
    [3] 王鹏,陈浩岚,鲍存余,等. 变形飞行器建模及控制方法研究综述[J]. 宇航学报,2022,43(7): 853-865. WANG Peng,CHEN Haolan,BAO Cunyu,et al. Review on modeling and control methods of morphing vehicle[J]. Journal of Astronautics,2022,43(7): 853-865. (in Chinese

    WANG Peng, CHEN Haolan, BAO Cunyu, et al. Review on modeling and control methods of morphing vehicle[J]. Journal of Astronautics, 2022, 43(7): 853-865. (in Chinese)
    [4] STROUD H R,LEAL P B C,HARTL D J. Experimental multiphysical characterization of an SMA driven,camber morphing owl wing section[C]//Nondestructive Characterization and Monitoring of Advanced Materials,Aerospace,Civil Infrastructure,and Transportation XII,Denver,US: Society of Photo-optical Instrumentation Engineer(SPIE),2018 : 176-184.
    [5] 白鹏,陈钱,徐国武,等. 智能可变形飞行器关键技术发展现状及展望[J]. 空气动力学学报,2019,37(3): 426-443. BAI Peng,CHEN Qian,XU Guowu,et al. Development status of key technologies and expectation about smart morphing aircraft[J]. Acta Aerodynamica Sinica,2019,37(3): 426-443. (in Chinese

    BAI Peng, CHEN Qian, XU Guowu, et al. Development status of key technologies and expectation about smart morphing aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(3): 426-443. (in Chinese)
    [6] 周文雅,张宗宇,王晓明,等. 机翼中小尺度主动变形研究进展及关键技术[J]. 机械工程学报,2021,57(2): 121-138. ZHOU Wenya,ZHANG Zongyu,WANG Xiaoming,et al. Research progress and key techniques of active morphing wing at medium and small scales[J]. Journal of Mechanical Engineering,2021,57(2): 121-138. (in Chinese doi: 10.3901/JME.2021.02.121

    ZHOU Wenya, ZHANG Zongyu, WANG Xiaoming, et al. Research progress and key techniques of active morphing wing at medium and small scales[J]. Journal of Mechanical Engineering, 2021, 57(2): 121-138. (in Chinese) doi: 10.3901/JME.2021.02.121
    [7] ARIS M S,MCGLEN R,OWEN I,et al. An experimental investigation into the deployment of 3-D,finned wing and shape memory alloy vortex generators in a forced air convection heat pipe fin stack[J]. Applied Thermal Engineering,2011,31(14/15): 2230-2240.
    [8] 渠磊,闫泽红,饶智祥,等. 形状记忆合金在航空航天领域的应用研究综述[J]. 航空动力学报,2022,37(10): 2127-2141. QU Lei,YAN Zehong,RAO Zhixiang,et al. Review on shape memory alloys' application in field of aerospace[J]. Journal of Aerospace Power,2022,37(10): 2127-2141. (in Chinese

    QU Lei, YAN Zehong, RAO Zhixiang, et al. Review on shape memory alloys' application in field of aerospace[J]. Journal of Aerospace Power, 2022, 37(10): 2127-2141. (in Chinese)
    [9] 王长国,卫剑征,刘宇艳,等. 航天柔性展开结构技术及其应用研究进展[J]. 宇航学报,2020,41(6): 761-769. WANG Changguo,WEI Jianzheng,LIU Yuyan,et al. Some advances in technologies of aerospace flexible deployable structure and their applications[J]. Journal of Astronautics,2020,41(6): 761-769. (in Chinese

    WANG Changguo, WEI Jianzheng, LIU Yuyan, et al. Some advances in technologies of aerospace flexible deployable structure and their applications[J]. Journal of Astronautics, 2020, 41(6): 761-769. (in Chinese)
    [10] KIM N G,HAN M W,IAKOVLEVA A,et al. Hybrid composite actuator with shape retention capability for morphing flap of unmanned aerial vehicle (UAV)[J]. Composite Structures,2020,243: 112227. doi: 10.1016/j.compstruct.2020.112227
    [11] 王杰,聂云清,吴军,等. 一种冷热交变环境下太阳帆应力保持方法[J]. 宇航学报,2022,43(6): 732-742. WANG Jie,NIE Yunqing,WU Jun,et al. A stress keeping method of solar sails in alternating cold and hot environments[J]. Journal of Astronautics,2022,43(6): 732-742. (in Chinese

    WANG Jie, NIE Yunqing, WU Jun, et al. A stress keeping method of solar sails in alternating cold and hot environments[J]. Journal of Astronautics, 2022, 43(6): 732-742. (in Chinese)
    [12] EMILIAVACA A,DE ARAÚJO C J,SOUTO C R,et al. Characterization of shape memory alloy micro-springs for application in morphing wings[J]. Smart Materials and Structures,2019,28(1): 015010. doi: 10.1088/1361-665X/aaeb80
    [13] CAMARA LL P,STROUD H R,HARTL D. Design and fabrication of a shape memory-based bio-inspired morphing wing[C]// Proceedings of the 8th ECCOMAS Thematic Conference on Smart Structures and Materials (SMART). Madrid,Spain: Springer,2017,971-983.
    [14] LEAL P B C,STROUD H R,SHEAHAN E,et al. Skin-based camber morphing utilizing shape memory alloy composite actuators in a wind tunnel environment: AIAA2018-0799[R]. Reston,US: AIAA,2018.
    [15] ASO A,TANAKA H. Study on a morphing wing structure using open-section member[C]// Proceedings of Asia-Pacific International Symposium on Aerospace Technology (APISAT). Canberra,Australia: Engineers Australia,2015,352-360.
    [16] CALDWELL N,GUTMARK E,RUGGERI R. Heat transfer model for blade twist actuator system[J]. Journal of Thermophysics and Heat Transfer,2007,21(2): 352-360. doi: 10.2514/1.23120
    [17] BENAFAN O,MOHOLT M R,BASS M,et al. Recent advancements in rotary shape memory alloy actuators for aeronautics[J]. Shape Memory and Superelasticity,2019,5(4): 415-428. doi: 10.1007/s40830-019-00260-3
    [18] BARBARINO S,PECORA R,LECCE L,et al. A novel SMA-based concept for airfoil structural morphing[J]. Journal of Materials Engineering and Performance,2009,18(5): 696-705.
    [19] MSOMI V,OLIVER G J. Smart morphing based on shape memory alloy plate[J]. Journal of Engineering,Design and Technology,2016,14(3): 475-488.
    [20] HOU Hetao,LI Jinpeng,CHEN Cheng,et al. Uncertainty analysis of a shape memory alloy model for dynamic analysis[J]. Smart Material Structures,2021,30(2): 025017. doi: 10.1088/1361-665X/abd5db
    [21] TANAKA K,NAGAKI S. A thermomechanical description of materials with internal variables in the process of phase transitions[J]. Ingenieur-Archiv,1982,51(5): 287-299. doi: 10.1007/BF00536655
    [22] LIANG C,ROGERS C A. One-dimensional thermomechanical constitutive relations for shape memory materials[J]. Journal of Intelligent Material Systems and Structures,1990,1(2): 207-234. doi: 10.1177/1045389X9000100205
    [23] BRINSON L C. One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable[J]. Journal of Intelligent Material Systems and Structures,1993,4(2): 229-242. doi: 10.1177/1045389X9300400213
    [24] 胡殿印,彭靖夫,贾傲,等. SMA复合材料低速冲击数值模拟方法[J]. 航空动力学报,2016,31(1): 17-22. HU Dianyin,PENG Jingfu,JIA Ao,et al. Numerical simulation method of low-velocity impact on SMA composite material[J]. Journal of Aerospace Power,2016,31(1): 17-22. (in Chinese

    HU Dianyin, PENG Jingfu, JIA Ao, et al. Numerical simulation method of low-velocity impact on SMA composite material[J]. Journal of Aerospace Power, 2016, 31(1): 17-22. (in Chinese)
    [25] WANG Jun,ZHANG Weihong,ZHU Jihong,et al. Finite element simulation of thermomechanical training on functional stability of shape memory alloy wave spring actuator[J]. Journal of Intelligent Material Systems and Structures,2019,30(8): 1239-1251. doi: 10.1177/1045389X19831356
    [26] ROH J H,HAN J H,LEE I. Nonlinear finite element simulation of shape adaptive structures with SMA strip actuator[J]. Journal of Intelligent Material Systems and Structures,2006,17(11): 1007-1022. doi: 10.1177/1045389X06063084
    [27] OEHLER S D,HARTL D J,LOPEZ R,et al. Design optimization and uncertainty analysis of SMA morphing structures[J]. Smart Materials and Structures,2012,21(9): 094016. doi: 10.1088/0964-1726/21/9/094016
    [28] LI Jiefeng,NIE Xutao,ZHANG Wei,et al. Finite-element simulation of a resonant frequency-tunable vibration isolator based on shape memory alloy wire[J]. Journal of Vibration Engineering & Technologies,2022,10(6): 2111-2128.
    [29] LAGOUDAS D C. Shape memory alloys: modeling and engineering applications[M]. New York,US: Springer,2008.
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  9
  • HTML浏览量:  27
  • PDF量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-23
  • 网络出版日期:  2024-05-17

目录

    /

    返回文章
    返回