留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带横向喷流效应飞行器的虚拟飞行天平测力装置研制与应用

苗磊 赵忠良 李浩 徐志伟 周米文

苗磊, 赵忠良, 李浩, 等. 带横向喷流效应飞行器的虚拟飞行天平测力装置研制与应用[J]. 航空动力学报, 2024, 39(6):20230384 doi: 10.13224/j.cnki.jasp.20230384
引用本文: 苗磊, 赵忠良, 李浩, 等. 带横向喷流效应飞行器的虚拟飞行天平测力装置研制与应用[J]. 航空动力学报, 2024, 39(6):20230384 doi: 10.13224/j.cnki.jasp.20230384
MIAO Lei, ZHAO Zhongliang, LI Hao, et al. Development and application of virtual flight balance measurement device for aircraft with lateral jet[J]. Journal of Aerospace Power, 2024, 39(6):20230384 doi: 10.13224/j.cnki.jasp.20230384
Citation: MIAO Lei, ZHAO Zhongliang, LI Hao, et al. Development and application of virtual flight balance measurement device for aircraft with lateral jet[J]. Journal of Aerospace Power, 2024, 39(6):20230384 doi: 10.13224/j.cnki.jasp.20230384

带横向喷流效应飞行器的虚拟飞行天平测力装置研制与应用

doi: 10.13224/j.cnki.jasp.20230384
详细信息
    作者简介:

    苗磊(1982-),男,高级工程师,硕士,研究领域为风洞天平研制与应用。E-mail:niuandmiao@vip.sina.com

    通讯作者:

    李浩(1982-),男,副研究员,博士,研究领域为非定常空气动力学。E-mail:lh_cardc@sina.com

  • 中图分类号: V211.73

Development and application of virtual flight balance measurement device for aircraft with lateral jet

  • 摘要:

    为满足某带横向喷流效应飞行器的虚拟飞行风洞试验需求,采用两台独立的4分量天平、传动轴及支撑横梁等组成测力装置同时分别测量前/后两段模型的气动载荷。通过有限元软件计算每台天平的灵敏度,传动轴对天平的干扰以及高压气体对天平的影响,结果表明:传动轴对天平力分量基本无影响,对俯仰力矩干扰约2.5%,对偏航力矩干扰约8%,压力对前天平的影响小于2%,对后天平的影响小于9%。基于每台天平的静态校准公式,生成了适用于测力装置的气动载荷计算方法,通过模拟加载验证了计算方法的准确性。最后,通过风洞试验检验了带横向喷流效应的虚拟飞行天平测力装置的整体性能。静态校准和风洞试验数据表明:静态校准数据与有限元分析结果基本一致,测力装置性能稳定、测值准确,满足风洞虚拟飞行试验研究要求。

     

  • 图 1  测力装置布局图

    Figure 1.  Layout of measurement device

    图 2  天平校准中心位置(单位:mm)

    Figure 2.  Location of balance calibration center (unit:mm)

    图 3  天平结构

    Figure 3.  Structure of balance

    图 4  传动轴

    Figure 4.  Transmission shaft

    图 5  密封原理图

    Figure 5.  Sealing schematic diagram

    图 6  旋转密封结构

    Figure 6.  Rotating seal structure

    图 7  贴片区域位置定义

    Figure 7.  Paste area location definition

    图 8  传动轴干扰分析模型

    Figure 8.  Transmission shaft interference analysis model

    图 9  天平校准

    Figure 9.  Balance calibration

    图 10  前天平Y分量系数

    Figure 10.  Y-component coefficient of front balance

    图 11  前天平Mz分量系数

    Figure 11.  Mz-component coefficient of front balance

    图 12  后天平Z分量系数

    Figure 12.  Z-component coefficient of rear balance

    图 13  后天平My分量系数

    Figure 13.  My-component coefficient of rear balance

    图 14  测力装置加载

    Figure 14.  Loading to measurement device

    图 15  后模型迎角与法向力Y

    Figure 15.  Angle of attack and Y of rear model

    表  1  模型载荷

    Table  1.   Load of model

    名称 Y/N Mz/(N·m) Z/N My/(N·m)
    前模型 17100 15300 9900 9000
    后模型 18900 17100 11700 10800
    下载: 导出CSV

    表  2  天平设计载荷

    Table  2.   Design load of balance

    名称 Y/N Mz/(N·m) Z/N My/(N·m)
    前天平 17100 7610 9900 4406
    后天平 18900 8975 11700 5558
    下载: 导出CSV

    表  3  设计载荷作用下,法向力Y和俯仰力矩Mz分量贴片区域的平均应变

    Table  3.   Average strain of Y and Mz component in paste area under design load 10−6

    位置 法向力Y 俯仰力矩Mz
    M1 M2 M1 M2
    L5 L6 L7 L8 L1 L2 L3 L4 L5 L6 L7 L8 L1 L2 L3 L4
    前天平 189 189 −188 −188 −198 −198 198 198 −520 −518 517 516 −540 −539 540 539
    后天平 162 162 −162 −162 −173 −173 171 171 −586 −586 587 587 −618 −618 613 612
    下载: 导出CSV

    表  4  设计载荷作用下,侧向力Z和偏航力矩My分量贴片区域的平均应变

    Table  4.   Average strain of Z and My component in paste area under design load 10−6

    位置 侧向力Z 偏航力矩My
    M5 M6 M5 M6
    L13 L14 L15 L16 L9 L10 L11 L12 L13 L14 L15 L16 L9 L10 L11 L12
    前天平 147 −148 147 −148 −153 154 −153 154 400 −401 400 −402 417 −419 417 −419
    后天平 132 −133 132 −133 −129 135 −129 135 474 −478 474 −479 469 −484 468 −484
    下载: 导出CSV

    表  5  设计载荷作用下,各分量电桥信号理论输出值

    Table  5.   Theoretical output of each bridge under design load mV

    位置 分量 UY UMz UZ UMy
    前天平 UY 7.6413 0.1878
    UMz 0.4300 20.9025
    UZ 5.9510 −0.1186
    UMy −0.341 16.1872
    后天平 UY 6.6860 0.2002
    UMz 0.5755 24.0566
    UZ 5.2948 0.0100
    UMy 0 19.0671
    下载: 导出CSV

    表  6  设计载荷及内压力作用下,法向力Y和俯仰力矩Mz分量贴片区域的平均应变

    Table  6.   Average strain of Y and Mz component in paste area under design load and internal pressure 10−6

    位置 法向力Y 俯仰力矩Mz
    M1 M2 M1 M2
    L5 L6 L7 L8 L1 L2 L3 L4 L5 L6 L7 L8 L1 L2 L3 L4
    前天平 107 107 −270 −270 −302 −301 94 94 −603 −600 435 434 −644 −643 437 436
    后天平 73 73 −252 −252 −282 −282 63 63 −675 −675 498 497 −727 −728 505 504
    下载: 导出CSV

    表  7  设计载荷及内压力作用下,侧向力Z和偏航力矩My分量贴片区域的平均应变

    Table  7.   Average strain of Z and My component in paste area under design load and internal pressure 10−6

    位置 侧向力Z 偏航力矩My
    M5 M6 M5 M6
    L13 L14 L15 L16 L9 L10 L11 L12 L13 L14 L15 L16 L9 L10 L11 L12
    前天平 22 −274 22 −274 −304 2 −304 2 275 −528 275 −526 266 −571 266 571
    后天平 0 −266 0 −266 −264 −6 −264 −6 343 −611 343 −612 333 −625 333 −625
    下载: 导出CSV

    表  8  设计载荷及内压力作用下,各分量电桥信号理论输出值

    Table  8.   Theoretical output of each bridge under design load and internal pressure mV

    位置 分量 UY UMz UZ UMy
    前天平 UY 7.6364 0.1829
    UMz 0.4350 20.9173
    UZ 5.9460 −0.1038
    UMy −0.3460 16.2020
    后天平 UY 6.7060 0.2002
    UMz 0.5955 24.0666
    UZ 5.24472 0.0801
    UMy −0.0350 19.1422
    下载: 导出CSV

    表  9  设计载荷作用下,带传动轴状态天平各分量贴片区域平均应变

    Table  9.   Average strain of each component of balance with transmission shaft under design load 10−6

    位置法向力Y俯仰力矩Mz侧向力Z偏航力矩My
    前天平194516148380
    后天平168585132436
    下载: 导出CSV

    表  10  前天平充压/未充压校准结果

    Table  10.   Calibration results of front balance with/without pressure

    参数 未充压 充压(20 MPa)
    力分量/N 力矩分量/(N·m) 力分量/N 力矩分量/(N·m)
    法向力Y 侧向力Z 俯仰力矩Mz 偏航力矩My 法向力Y 侧向力Z 俯仰力矩Mz 偏航力矩My
    设计载荷 17100 9900 7610 4406 17100 9900 7610 4406
    校准载荷 18000 5760 6400 4800 18000 5760 6400 4800
    供桥电压/V 9.8853 9.8853 9.8853 9.8853 9.8853 9.8853 9.8853 9.8853
    综合加载误差/% 0.11 0.13 0.10 0.12 0.13 0.13 0.12 0.12
    综合加载重复性误差/% 0.01 0.01 0.01 0.01 0.02 0.03 0.03 0.02
    下载: 导出CSV

    表  11  后天平充压/未充压校准结果

    Table  11.   Calibration results of rear balance with/without pressure

    参数 未充压 充压(20 MPa)
    力分量/N 力矩分量/(N·m) 力分量/N 力矩分量/(N·m)
    法向力Y 侧向力Z 俯仰力矩Mz 偏航力矩My 法向力Y 侧向力Z 俯仰力矩Mz 偏航力矩My
    设计载荷 18900 11700 8975 5558 18900 11700 8975 5558
    校准载荷 23040 21600 6400 6400 23040 21600 6400 6400
    供桥电压/V 10.009 10.009 10.009 10.009 10.009 10.009 10.009 10.009
    综合加载误差/% 0.12 0.13 0.12 0.13 0.14 0.15 0.12 0.13
    综合加载重复性误差/% 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.02
    下载: 导出CSV
  • [1] 赖江,赵忠良,李玉平,等. 导弹模型后体横向喷流干扰特性[J]. 航空动力学报,2019,34(2): 469-478. LAI Jiang,ZHAO Zhongliang,LI Yuping,et al. Transverse jet interaction characteristics on rear section of missile model[J]. Journal of Aerospace Power,2019,34(2): 469-478. (in Chinese

    LAI Jiang, ZHAO Zhongliang, LI Yuping, et al. Transverse jet interaction characteristics on rear section of missile model[J]. Journal of Aerospace Power, 2019, 34(2): 469-478. (in Chinese)
    [2] SRIVASTAVA B,SRIVASTAVA B. Lateral jet control of a supersonic missile - CFD predictions and comparison to force and moment measurements[R]. AIAA1997-639,1997.
    [3] SRIVASTAVA B. Lateral jet control of a supersonic missile: computational and experimental comparisons[J]. Journal of Spacecraft and Rockets,1998,35(2): 140-146. doi: 10.2514/2.3321
    [4] 陈洪,刘李涛,巫朝君. 8 m×6 m风洞大尺度模型进气道和喷流试验技术[J]. 空气动力学学报,2017,35(6): 875-878. CHEN Hong,LIU Litao,WU Chaojun. Inlet and jet test techniques for large scale model in 8 m×6 m low speed wind tunnel[J]. Acta Aerodynamica Sinica,2017,35(6): 875-878. (in Chinese

    CHEN Hong, LIU Litao, WU Chaojun. Inlet and jet test techniques for large scale model in 8 m×6 m low speed wind tunnel[J]. Acta Aerodynamica Sinica, 2017, 35(6): 875-878. (in Chinese)
    [5] 李建强,李耀华,郭旦平,等. 2.4米跨声速风洞推力矢量试验技术[J]. 空气动力学学报,2016,34(1): 20-26. LI Jianqiang,LI Yaohua,GUO Danping,et al. The thrust vectoring experiment technique in the 2.4 m×2.4 m transonic wind tunnel[J]. Acta Aerodynamica Sinica,2016,34(1): 20-26. (in Chinese

    LI Jianqiang, LI Yaohua, GUO Danping, et al. The thrust vectoring experiment technique in the 2.4 m×2.4 m transonic wind tunnel[J]. Acta Aerodynamica Sinica, 2016, 34(1): 20-26. (in Chinese)
    [6] MCWATERS M. F-35 conventional mode jet-effects testing methodology[R]. AIAA2015-2404,2015.
    [7] 赵忠良,吴军强,李浩,等. 高机动导弹气动/运动/控制耦合的风洞虚拟飞行试验技术[J]. 空气动力学学报,2016,34(1): 14-19. ZHAO Zhongliang,WU Junqiang,LI Hao,et al. Wind tunnel based virtual flight testing of aerodyanmics,flight dynamics and flight control for high maneuver missle[J]. Acta Aerodynamica Sinica,2016,34(1): 14-19. (in Chinese

    ZHAO Zhongliang, WU Junqiang, LI Hao, et al. Wind tunnel based virtual flight testing of aerodyanmics, flight dynamics and flight control for high maneuver missle[J]. Acta Aerodynamica Sinica, 2016, 34(1): 14-19. (in Chinese)
    [8] 赵忠良,吴军强,李浩,等. 2.4 m跨声速风洞虚拟飞行试验技术研究[J]. 航空学报,2016,37(2): 504-512. ZHAO Zhongliang,WU Junqiang,LI Hao,et al. Investigation of virtual flight testing technique based on 2.4 m transonic wind tunnel[J]. Acta Aeronautica et Astronautica Sinica,2016,37(2): 504-512. (in Chinese

    ZHAO Zhongliang, WU Junqiang, LI Hao, et al. Investigation of virtual flight testing technique based on 2.4 m transonic wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 504-512. (in Chinese)
    [9] 李浩,赵忠良,范召林. 风洞虚拟飞行试验模拟方法研究[J]. 实验流体力学,2011,25(6): 72-76. LI Hao,ZHAO Zhongliang,FAN Zhaolin. Simulation method for wind tunnel based virtual flight testing[J]. Journal of Experiments in Fluid Mechanics,2011,25(6): 72-76. (in Chinese doi: 10.3969/j.issn.1672-9897.2011.06.014

    LI Hao, ZHAO Zhongliang, FAN Zhaolin. Simulation method for wind tunnel based virtual flight testing[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6): 72-76. (in Chinese) doi: 10.3969/j.issn.1672-9897.2011.06.014
    [10] 李浩. 风洞虚拟飞行试验相似准则和模拟方法研究[D]. 四川 绵阳: 中国空气动力研究与发展中心,2012. LI Hao. Study on the similarity criteria and simulation method of the wind tunnel based virtual flight testing[D]. Mianyang,Sichuan: China Aerodynamics Research and Development Center,2012. (in Chinese

    LI Hao. Study on the similarity criteria and simulation method of the wind tunnel based virtual flight testing[D]. Mianyang, Sichuan: China Aerodynamics Research and Development Center, 2012. (in Chinese)
    [11] RATLIFF C L,MARQUART E J. Bridging the gap between ground and flight tests: virtual flght testing (VIF)[R]. AIAA-1995-3875,1995.
    [12] RATLIFF C,MARQUART E. An assessment of a potential test technique: virtual flight testing (VFT) [R]. AIAA95-3472,1995.
    [13] LAWRENCE F,MILLS B. Status update of the AEDC wind tunnel virtual flight testing development program[R]. AIAA2002-0168,2002.
    [14] MAGILL J. Design of a wire suspension system for dynamic testing in AEDC 16T[R]. Reno,US: 41st Aerospace Sciences Meeting and Exhibit,2003.
    [15] MAGILL J C,CATALDI P,MORENCY J R,et al. Demonstration of a wire suspension for wind-tunnel virtual flight testing[J]. Journal of Spacecraft and Rockets,2009,46(3): 624-633. doi: 10.2514/1.39188
    [16] PATTINSON J,LOWENBERG M H,GOMAN M G. A multi-degree-of freedom rig for wind tunnel determination of dynamic data[R]. AIAA-2009-5727,2009.
    [17] GRISHIN I,KHRABROV A,KOLINKO A,et al. Wind tunnel investigation of critical flight regimes using dy-namically scaled actively controlled model in 3 DOF gimbal[R]. St Petersburg,Russia: 29th Congress of the International Council of the Aeronautical Sciences,2014.
    [18] 向光伟,谢斌,赵忠良,等. 2.4 m×2.4 m跨声速风洞虚拟飞行试验天平研制[J]. 实验流体力学,2014,28(1): 65-69. XIANG Guangwei,XIE Bin,ZHAO Zhongliang,et al. Development of virtual flight test balance for 2.4 m×2.4 m transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2014,28(1): 65-69. (in Chinese doi: 10.11729/syltlx20130015

    XIANG Guangwei, XIE Bin, ZHAO Zhongliang, et al. Development of virtual flight test balance for 2.4 m×2.4 m transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(1): 65-69. (in Chinese) doi: 10.11729/syltlx20130015
    [19] 郭林亮,祝明红,傅澔,等. 一种低速风洞虚拟飞行试验装置的建模与仿真[J]. 空气动力学学报,2017,35(5): 708-717,726. GUO Linliang,ZHU Minghong,FU Hao,et al. Modeling and simulation for a low speed wind tunnel virtual flight test rig[J]. Acta Aerodynamica Sinica,2017,35(5): 708-717,726. (in Chinese

    GUO Linliang, ZHU Minghong, FU Hao, et al. Modeling and simulation for a low speed wind tunnel virtual flight test rig[J]. Acta Aerodynamica Sinica, 2017, 35(5): 708-717, 726. (in Chinese)
    [20] 张石玉,赵俊波,付增良,等. 类F-16飞行器风洞虚拟飞行试验研究[J]. 实验流体力学,2020,34(1): 49-54,86. ZHANG Shiyu,ZHAO Junbo,FU Zengliang,et al. Wind tunnel based virtual flight testing research of F-16 fighter[J]. Journal of Experiments in Fluid Mechanics,2020,34(1): 49-54,86. (in Chinese

    ZHANG Shiyu, ZHAO Junbo, FU Zengliang, et al. Wind tunnel based virtual flight testing research of F-16 fighter[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 49-54, 86. (in Chinese)
    [21] 王延灵,卜忱,王建锋,等. 8m低速风洞虚拟飞行试验技术研究[J]. 飞行力学,2021,39(5): 71-76,94. WANG Yanling,BU Chen,WANG Jianfeng,et al. Investigation of virtual flight test technique based on 8 m low speed wind tunnel[J]. Flight Dynamics,2021,39(5): 71-76,94. (in Chinese

    WANG Yanling, BU Chen, WANG Jianfeng, et al. Investigation of virtual flight test technique based on 8 m low speed wind tunnel[J]. Flight Dynamics, 2021, 39(5): 71-76, 94. (in Chinese)
    [22] 苗磊,李耀华,李建强,等. 某飞行器推力矢量试验测力装置研制[J]. 航空动力学报,2020,35(12): 2521-2531. MIAO Lei,LI Yaohua,LI Jianqiang,et al. Development of force measuring device for an aircraft thrust vectoring test[J]. Journal of Aerospace Power,2020,35(12): 2521-2531. (in Chinese

    MIAO Lei, LI Yaohua, LI Jianqiang, et al. Development of force measuring device for an aircraft thrust vectoring test[J]. Journal of Aerospace Power, 2020, 35(12): 2521-2531. (in Chinese)
    [23] 罗华云,赖传兴,王月贵,等. 喷管模型试验器六分量天平校准技术[J]. 航空动力学报,2013,28(1): 67-73. LUO Huayun,LAI Chuanxing,WANG Yuegui,et al. Six-component balance calibration technology for nozzle model testing facility[J]. Journal of Aerospace Power,2013,28(1): 67-73. (in Chinese

    LUO Huayun, LAI Chuanxing, WANG Yuegui, et al. Six-component balance calibration technology for nozzle model testing facility[J]. Journal of Aerospace Power, 2013, 28(1): 67-73. (in Chinese)
    [24] AIAA. Calibration and use of internal strain gage balances with application to wind tunnel testing: AIAA R-091-2003[S]. Reston,US: AIAA,2003.
    [25] AIAA. Calibration and use of internal strain gage balances with application to wind tunnel testing: AIAA R-091A-2020[S]. Reston,US: AIAA,2020.
    [26] 苗磊,李建强,李耀华,等. 风洞天平静态校准与使用状态一致性研究[J]. 中国测试,2020,46(8): 158-164. MIAO Lei,LI Jianqiang,LI Yaohua,et al. Study on consistency between static calibration and service state of wind tunnel balance[J]. China Measurement & Test,2020,46(8): 158-164. (in Chinese doi: 10.11857/j.issn.1674-5124.2019010027

    MIAO Lei, LI Jianqiang, LI Yaohua, et al. Study on consistency between static calibration and service state of wind tunnel balance[J]. China Measurement & Test, 2020, 46(8): 158-164. (in Chinese) doi: 10.11857/j.issn.1674-5124.2019010027
  • 加载中
图(15) / 表(11)
计量
  • 文章访问数:  33
  • HTML浏览量:  12
  • PDF量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-13
  • 网络出版日期:  2024-01-19

目录

    /

    返回文章
    返回